首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   0篇
化学   43篇
物理学   3篇
  2008年   1篇
  2006年   1篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1974年   3篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   3篇
  1966年   2篇
排序方式: 共有46条查询结果,搜索用时 843 毫秒
11.
Magnesium can be separated from calcium by elution with 3.0 M hydrochloric acid containing 60% ethanol from a column of AG50W-X8 cation-exchange resin. Calcium is retained and can be eluted with 3.0 M hydrochloric acid or 2.0 M nitric acid. The separation factor of (αMgca=5.6 is considerably higher than that in aqueous hydrochloric acid and comparable to those obtained with organic complexing reagents. Separations are sharp and quantitative; up to 10 mmol of magnesium can be separated from 0.01 mmol of calcium and vice versa on a 60-ml column. Al, Fe(III), Mn, Ni(II), Co(II), Zn, Cd, Cu(II), Pb(II), U(VI), Be, Ga, Ti(IV) in the presence of H2O2 and many other elements accompany magnesium and can be separated from calcium quantitatively. Sr, Ba, Zr, Hf, Th, Sc, La and the rare earths are retained together with Ca, but can be separated by other methods.  相似文献   
12.
Beryllium is separated from Mg, Ca, Mn(II), Fe(III), Al, Co(II). Zn. U(VI), La and Gd by elution with 2.0 M nitric acid in 70 % methanol from a column of AG50W-X8 sulphonated polystyrene cation exchanger, while the other elements are retained quantitatively. Sr, Ba, Sc, Y, the other lanthanides, Zr, Hf, Th, Ga, In, Cd and Ni(II) should also be separated according to their distribution coefficients or elution behaviour. Separations are sharp and recoveries quantitative from millimolar amounts down to 10 μg of beryllium. The separation of Ti(IV) and Cu(II) from beryllium is not satisfactory and requires rather large columns. Bi(III), Pb(II), Hg(II) and the alkali metals are eluted together with beryllium, but can be separated by other methods. Typical elution curves and results for the quantitative separation of binary synthetic mixtures are presented.  相似文献   
13.
Strelow FE  Wienert CH  van der Walt TN 《Talanta》1974,21(11):1183-1191
Indium can be separated from Zn, Pb(II), Ga, Ca, Be, Mg, Ti(IV), Mn(II), Fe(III), Al, U(VI), Na, Ni(II) and Co(II) by selective elution with 0.50M hydrochloric acid in 30% aqueous acetone from a column of AG50W-X8 cation-exchange resin, all the other elements being retained by the column. Lithium is included in the elements retained by the column when 0.35M hydrochloric acid in 45% aqueous acetone is used for eluting indium, but the elution of indium is slightly retarded. Ba, Sr, Zr, Hf, Th, Sc, Y, La and the lanthanides, Rb and Cs should also be retained according to their distribution coefficients. Cd, Bi(III), Au(III), Pt(IV), Pd(II), Rh(III), Mo(VI) and W(VI) can be eluted with 0.20M hydrobromic acid in 50% aqueous acetone before the elution of indium, and Ir(III), Ir(IV), As(III), As(V), Se(IV), Tl(III), Hg(II), Ge(IV), Sb(III) and Sb(V), though not investigated in detail, should accompany these elements. Relevant distribution coefficients and elution curves and results for analyses of synthetic mixtures of indium with other elements are presented.  相似文献   
14.
A simple method is presented for the separation of lead-203 from copper-backed thallium cyclotron targets. The procedure involves cation-exchange chromatography in hydrochloric acid and hydrochloric acid-acetone mixtures. Further purification involves anion-exchange chromatography in nitric acid-hydrobromic acid mixtures. A cation-exchange column containing 3.0 g of resin can handle as much as 15 g of thallium and 160 mg of copper. An anion-exchange column containing 3.0 g of resin can separate lead from up to 200 mg of thallium and 10 mg of copper. Separations are extremely sharp and less than 0.1 mug of thallium and less than 0.1 mug of copper remain in the lead-203 fraction.  相似文献   
15.
Strelow FW  Baxter C 《Talanta》1969,16(8):1145-1151
Tervalent rare earths and Sc are separated from the silicate-forming elements Al, Fe(III), Mg and Ti(IV), and also from Mn(II), U(VI), Be, Ga, In(III), Tl(III), Bi(III), Ni, Zn, Cu(II), Cd and Pb by cation-exchange chromatography. The other elements are eluted with 3.0 M HC1 containing 50% ethanol from a column of 60 ml of AG50W-X8 resin (200-400 mesh) while the rare earths are retained. Separation factors are larger than in aqueous hydrochloric acid. Th, Zr, Hf, Ba, Sr, Ca, K, and Rb are the only elements which accompany the rare earths group, but these can easily be separated by other methods which are described. Relevant distribution coefficients, elution curves and accurate results of quantitative separations of synthetic mixtures are presented.  相似文献   
16.
The application of BIO-REX 40, a phenolformaldehyde resin, to the quantitative separation of Li, Na, K, Rb and Cs is described. All five elements can be separated in a single procedure by using a 25-g (62-ml) resin column and eluting lithium with 500 ml of 1.00 M hydrochloric acid in 80% ethanol, sodium with 500 ml of 0.20 M hydrochloric acid, potassium with 250 ml of 0.70 M hydrochloric acid, rubidium with another 450 ml of 0.70 M hydrochloric acid and cesium with 500 ml of 4.0 M hydrochloric acid. Procedures are described for the accurate determination of alkali metals in silicate minerals, plant material and water. Al, Fe, Ti, Zr, V, Mo and some other elements are first separated by absorption as oxalato complexes on a column of AG1-X8 resin. The alkali metals are finally determined by gravimetry or atomic absorption spectrometry. Tables of distribution coefficients and quantitative results of analyses of synthetic mixture and standard silicate samples are presented together with typical elution curves.  相似文献   
17.
Traces of lead and minor amounts up to 20 mg, can be separated from gram amounts of thallium by cation-exchange chromatography on a column containing only 2 g of AG50W-X4 resin. Thallium passes through the column in 0.1 M HCl in 40% acetone. The retained lead can be eluted with 3 M HCl or HNO3. Other elements, including Cd, Zn, In, Ga, Cu(II), Fe(III). Mn(II), Co(II). Ni(II), U(VI) and Al, are retained quantitatively with lead. Only Hg(II), Au(III), the platinum metals, bismuth and elements forming oxyanions accompanying thallium. Results for the determination of trace elements in 99.999% pure thallium are presented.  相似文献   
18.
Comparative cation-exchange distribution coefficients of ammines and aquo complexes of Cu(II), Ni(II), Cd, Zn, Ag, Co(II)/(III), Hg(II), Pd(II), Au(III) and Pt(II) were determined in 0.1, 0.2, 0.5 and 1.0 M ammonium nitrate solution. The values for mercury(II) in ammonium chloride and of the ammine of copper(II) in ammonium citrate and ammonium sulphosalicylate solutions were also measured. The ion-exchange behaviour of the ammines is discussed and some possible separations are demonstrated by the experimental elution curves for the ion pairs Mg-Ni(II), Ca-Zn, Yb-Cd and Fe(III)-Cu(II).  相似文献   
19.
Meintjies E  Strelow FW  Victor AH 《Talanta》1987,34(4):401-405
Traces and small amounts of bismuth can be separated from gram amounts of thallium and silver by successively eluting these elements with 0.3M and 0.6M nitric acid from a column containing 13 ml (3 g) of AG50W-X4, a cation-exchanger (100-200 mesh particle size) with low cross-linking. Bismuth is retained and can be eluted with 0.2M hydrobromic acid containing 20% v/v acetone, leaving many other trace elements absorbed. Elution of thallium is quite sharp, but silver shows a small amount of tailing (less than 1 gmg/ml silver in the eluate) when gram amounts are present, between 20 and 80 mug of silver appearing in the bismuth fraction. Relevant elution curves and results for the analysis of synthetic mixtures containing between 50 mug and 10 mg of bismuth and up to more than 1 g of thallium and silver are presented, as well as results for bismuth in a sample of thallium metal and in Merck thallium(I) carbonate. As little as 0.01 ppm of bismuth can be determined when the separation is combined with electrothermal atomic-absorption spectrometry.  相似文献   
20.
Lithium can be separated from sodium, beryllium and many other elements by eluting lithium with 1 M nitric acid in 80% methanol from a column of AG50W-X8 sulphonated polystyrene cation-exchange resin. The separation factor is not quite as large as that in 1 M hydrochloric acid in 80% methanol, but many elements, such as Zn, Cd, In, Pb(II), Bi(III) and Fe(III), which form chloride complexes in 1 M HCl-80% methanol are retained quantitatively together with Na, Be, Mg, Ca, Mn(II), Al, Ti(IV), U(VI), and many other elements, when 1 M HNO3-80% methanol is used for elution of lithium. A method for the accurate determination of traces of lithium in rock samples is described, and some results obtained are presented together with relevant distribution coefficients, elution curves and results for the analysis of synthetic mixtures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号