ortho-Lithiation of N,N-diisopropyl-P,P-diphenylphosphinothioic amide using n-BuLi in the presence of TMEDA in diethyl ether followed by electrophilic trapping is described as an efficient method for the synthesis of ortho-functionalised derivatives in high yields. The structural modification of the phosphinothioic amide includes C-X (X = P, S, Si, Sn, I) and C-C bond forming reactions with a large variety of electrophiles. Additional applications based on functional group transformations are also reported. They include imine formation, desulfurization and Suzuki cross-coupling reactions on selected compounds. 相似文献
Possibilities and practical aspects of implementation of splitless injection of larger volumes for fast GC purposes utilizing narrow-bore column, hydrogen as carrier gas, fast temperature programming under programmed flow conditions and commercial instrumentation were searched. As a model sample semivolatile compounds of a broad range of volatility and polarity (7 n-alkanes and 19 pesticides) were chosen. Peak shapes, peak broadening and peak areas and its repeatability were evaluated under various experimental set-ups (liner/injection technique combinations). Various factors, such as liner design, injection technique, retention gap length, compound volatility and polarity, the solvent used, initial oven temperature influenced compound focusation and/or maximal injection volume. Combination of analytical column (CP-Sil 13 CB 25 m long, 0.15 mm i.d., film thickness 0.4 microm) with normal-bore retention gap (1 m long, 0.32 mm i.d.) allowed maximal injection volume 8 microl for 4 mm i.d. liner used without any peak distortion when solvent recondensation in the retention gap was employed. 相似文献
Native polyacrylamide electrophoresis in the presence of two reversible protein anionic stains (Ponceau S and Ponceau 2R) was used to study the oligomeric states of soluble proteins. A mild binding of the used protein stains to nondissociated protein oligomers imposed a charge shift on the proteins resulting into separation of protein species according to their size under physiological conditions. Adsorbed stains could be easily removed after electrophoresis by washing of polyacrylamide gel with buffer and protein complexes could be visualized either by the detection of their enzyme activity or by using a nonspecific protein stain. The specific detection of enzyme activity of glycosidases, lactate dehydrogenase, or phosphatases was shown as an example. 相似文献
In order to assess the long-term safety of deep radioactive waste repositories, a precise characterization of the different sorption processes on a molecular basis and the exact definition of geochemical boundary conditions for their relevance are of immense importance. Through sorption on various minerals the migration of radionuclides will be hindered and their retention will be ensured. Using time-resolved laser fluorescence spectroscopy (TRLFS) and extended X-ray absorption fine structure (EXAFS) spectroscopy, it was possible to identify outer-sphere sorbed trivalent lanthanides and actinides onto different montmorillonites and illite. Furthermore, the quantification of Cm(III)/clay outer-sphere sorption in D(2)O at different ionic strengths was shown. The results were confirmed by ion exchange model calculations. Finally, the structural parameters of a Sm(III)/clay outer-sphere complex were obtained by EXAFS measurements. 相似文献
A quartz crystal microbalance (QCM) and dual polarization interferometry (DPI) have been utilized to study how the structure of poly(allylamine hydrochloride) (PAH)/poly(styrene sulfonate) (PSS) multilayers is affected by the rinsing method (i.e., the termination of polyelectrolyte adsorption). The effect of the type of counterions used in the deposition solution was also investigated, and the polyelectrolyte multilayers were formed in a 0.5 M electrolyte solution (NaCl and KBr). From the measurements, it was observed that thicker layers were obtained when using KBr in the deposition solution than when using NaCl. Three different rinsing protocols have been studied: (i) the same electrolyte solution as used during multilayer formation, (ii) pure water, and (iii) first a salt solution (0.5 M) and then pure water. When the multilayer with PAH as the outermost layer was exposed to pure water, an interesting phenomenon was discovered: a large change in the energy dissipation was measured with the QCM. This could be attributed to the swelling of the layer, and from both QCM and DPI it is obvious that only the outermost PAH layer swells (to a thickness of 25-30 nm) because of a decrease in ionic strength and hence an increase in intra- and interchain repulsion, whereas the underlying layers retain a very rigid and compact structure with a low water content. Interestingly, the outermost PAH layer seems to obtain very similar thicknesses in water independent of the electrolyte used for the multilayer buildup. Another interesting aspect was that the measured thickness with the DPI evaluated by a single-layer model did not correlate with the estimated thickness from the model calculations performed on the QCM-D data. Thus, we applied a two-layer model to evaluate the DPI data and the results were in excellent agreement with the QCM-D results. To our knowledge, this evaluation of DPI data has not been done previously. 相似文献
We compare three different methods to quantify the monosaccharide fucose in solutions using the displacement of a large glycoprotein, lactoferrin. Two microfluidic analysis methods, namely fluorescence detection of (labeled) lactoferrin as it is displaced by unlabeled fucose and the displacement of (unlabeled) lactoferrin in SPR, provide fast responses and continuous data during the experiment, theoretically providing significant information regarding the interaction kinetics between the saccharide groups and binding sites. For comparison, we also performed a static displacement ELISA. The stationary binding site in all cases was immobilized S2-AAL, a monovalent polypeptide based on Aleuria aurantia lectin. Although all three assays showed a similar dynamic range, the microfluidic assays with fluorescent or SPR detection show an advantage in short analysis times. Furthermore, the microfluidic displacement assays provide a possibility to develop a one-step analytical platform.
This study shows that the relaxivity and optical properties of functionalised lanthanide‐DTPA‐bis‐amide complexes (lanthanide=Gd3+ and Eu3+, DTPA=diethylene triamine pentaacetic acid) can be successfully modulated by addition of specific anions, without direct Ln3+/anion coordination. Zinc(II)‐dipicolylamine moieties, which are known to bind strongly to phosphates, were introduced in the amide “arms” of these ligands, and the interaction of the resulting Gd–Zn2 complexes with a range of anions was screened by using indicator displacement assays (IDAs). Considerable selectivity for polyphosphorylated species (such as pyrophosphate and adenosine‐5′‐triphosphate (ATP)) over a range of other anions (including monophosphorylated anions) was apparent. In addition, we show that pyrophosphate modulates the relaxivity of the gadolinium(III) complex, this modulation being sufficiently large to be observed in imaging experiments. To establish the binding mode of the pyrophosphate and gain insight into the origin of the relaxometric modulation, a series of studies including UV/Vis and emission spectroscopy, luminescence lifetime measurements in H2O and D2O, 17O and 31P NMR spectroscopy and nuclear magnetic resonance dispersion (NMRD) studies were carried out. 相似文献
One of the milestone structures in the development of transition-metal complexes with metal-metal bonds of multiple bond order was the lithium methylchromate dimer Me(8)Cr(2)[Li(donor)](4) (donor = THF or Et(2)O). Using a simple salt metathesis reaction mixing this compound with sodium tert-butoxide, the sodium congener Me(8)Cr(2)[Na(OEt(2))](4) has been synthesized as a green crystalline compound and isolated in 51% yield. Its solid-state structure was determined by single-crystal X-ray diffraction. Exhibiting exact crystallographic C(4h) symmetry, this heavier alkali-metal chromate structure is also dimeric, formally comprising a (Me(8)Cr(4))(4-) tetranionic core with four peripheral Na(+) cations carrying supporting ether ligands. Its salient feature is the long Cr···Cr distance of 3.263(2) ?, which is remarkably elongated compared to that in the lithium THF-solvated congener [1.968(2) ?]. With respect to the methyl C atoms, the Cr coordination is distorted-square-planar. Each Na(+) interacts with four methyl C atoms, and there are also some short Na···H(C) contacts. Unlike for lithium chromate, no NMR spectroscopic data could be obtained for sodium chromate. The paramagnetic character of sodium chromate was confirmed by variable-temperature magnetization measurements, which indicated antiferromagnetic behavior. 相似文献
Stability of Dyckerhoff cement Class G partially substituted (15 mass%) by metakaolin (MK), silica fume (SF) and ground granulated blast-furnace slag (BFS) was investigated after 7 days of curing under standard and two different autoclaving conditions. Mercury intrusion porosimetry, X-ray diffraction analysis and combined thermogravimetric–differential scanning calorimetry were used to evaluate pore structure development, compressive strength and their dependence on the type of additives in relation to the particular phase composition. Hydrothermal curing led to the formation of α-C2SH and jaffeite, mostly in the case of referential samples and compositions with addition of slowly reacting BFS. Whilst modest hydrothermal curing (0.6 MPa, 165 °C) favoured formation of α-C2SH, larger amounts of jaffeite were determined after curing at the highest used pressure and temperature (2.0 MPa, 220 °C). Undesired transformation of primary hydration products was prevented especially by addition of highly reactive and very fine SF. Particular composition attained the best pore structure characteristics and compressive strength after curing at 0.6 MPa and 165 °C. Formation of more stable phases with C/S ratio close to 1 was proved by wollastonite formation during DSC analyses. More severe conditions of curing, however, led to the significant deterioration of microstructure and strength of corresponding sample, probably due to the formation of trabzonite, killalaite and zoisite. Considering the values of hydraulic permeability coefficient and compressive strength, replacement of cement by MK improved significantly the properties of cement when compared with the referential as well as with other blended compositions under the mentioned curing conditions. 相似文献
The paper shows a computer-assisted procedure for the optimization of selectivity of two columns coupled in series by tuning the working temperature (using the isothermal mode) and columns coupling-point pressure at constant inlet and outlet carrier gas pressures. The optimization procedure validation was tested by the separation of 32 hydrocarbons in a column series with the aim to resolve the maximum number of components in the shortest possible analysis time.Dedicated to Professor J. F. K. Huber on the occasion of his 65th birthday 相似文献