首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5154篇
  免费   215篇
  国内免费   28篇
化学   3947篇
晶体学   46篇
力学   71篇
数学   400篇
物理学   933篇
  2023年   38篇
  2022年   91篇
  2021年   110篇
  2020年   89篇
  2019年   95篇
  2018年   74篇
  2017年   71篇
  2016年   177篇
  2015年   144篇
  2014年   178篇
  2013年   314篇
  2012年   361篇
  2011年   441篇
  2010年   255篇
  2009年   249篇
  2008年   354篇
  2007年   289篇
  2006年   293篇
  2005年   227篇
  2004年   206篇
  2003年   178篇
  2002年   212篇
  2001年   102篇
  2000年   106篇
  1999年   61篇
  1998年   39篇
  1997年   51篇
  1996年   46篇
  1995年   35篇
  1994年   27篇
  1993年   32篇
  1992年   39篇
  1991年   23篇
  1990年   31篇
  1989年   31篇
  1988年   15篇
  1987年   16篇
  1986年   14篇
  1985年   27篇
  1984年   23篇
  1983年   16篇
  1982年   18篇
  1981年   11篇
  1980年   13篇
  1979年   10篇
  1978年   15篇
  1977年   19篇
  1976年   12篇
  1975年   11篇
  1970年   17篇
排序方式: 共有5397条查询结果,搜索用时 11 毫秒
231.
Human mesenchymal stem cells (MSCs) have emerged as attractive cellular vehicles to deliver therapeutic genes for ex-vivo therapy of diverse diseases; this is, in part, because they have the capability to migrate into tumor or lesion sites. Previously, we showed that MSCs could be utilized to deliver a bacterial cytosine deaminase (CD) suicide gene to brain tumors. Here we assessed whether transduction with a retroviral vector encoding CD gene altered the stem cell property of MSCs. MSCs were transduced at passage 1 and cultivated up to passage 11. We found that proliferation and differentiation potentials, chromosomal stability and surface antigenicity of MSCs were not altered by retroviral transduction. The results indicate that retroviral vectors can be safely utilized for delivery of suicide genes to MSCs for ex-vivo therapy. We also found that a single retroviral transduction was sufficient for sustainable expression up to passage 10. The persistent expression of the transduced gene indicates that transduced MSCs provide a tractable and manageable approach for potential use in allogeneic transplantation.  相似文献   
232.
233.
The major metabolite of duloxetine is a glucuronide conjugate of 4‐hydroxy duloxetine (4‐HD). However, interestingly, there have been no reports determining concentrations of 4‐HD and no fully validated method has been established for measuring duloxetine and 4‐HD in rat plasma. We developed a method for the simultaneous quantification of duloxetine and its metabolite in rat plasma using high‐performance liquid chromatography tandem mass spectrometry. Duloxetine and 4‐HD were analyzed on a reverse‐phase C18 analytical column after protein precipitation of the plasma sample with methanol, using carbamazepine as an internal standard. The isocratic mobile phase of 5 mm ammonium acetate–methanol (4:6, v/v) was eluted at 0.4 mL/min. Quantification was performed on a triple‐quadrupole mass spectrometer using electrospray ionization, and the ion transition monitored in selective reaction monitoring mode. The coefficient of variation for assay precision was <18.0%, and the accuracy was 84.0–118.0%. This method was successfully used to measure the concentrations of duloxetine and its metabolite in plasma following the oral administration of a single 40 mg/kg dose in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
234.
235.
236.
(+)-Monomorine has been synthesized under mild hydrogenation conditions initiating deprotection followed by intramolecular, sequential reductive amination reactions. The precursors could be prepared concisely using B-alkyl Suzuki cross coupling of a chiral homoallylamine and a vinyl iodide or an iodofuran derivative.  相似文献   
237.
The cyclizations of two structurally similar 2-oxo-5-hexenyl-type radicals have been investigated by ab initio and density functional (UB3LYP/6-31+G**//UHF/6-31G* and UB3LYP/6-31G*//UB3LYP/6-31G*) calculations. The origin of apparently contradictory reports of 6-endo and 5-exo cyclizations is determined. Kinetic control favors 6-endo cyclization, while thermodynamic control gives 5-exo cyclization, and the observation of different products from different research groups arises from the difference in experimental conditions used by the two groups. The outcome of a new cyclization reaction was predicted by using these theoretical techniques. Kinetic control is predicted to yield exclusively the products of 6-endo cyclization, while thermodynamic control would lead to an approximately equal mixture of one 6-endo and one 5-exo cyclized product. Experimental studies revealed that the reaction yields only the products of 6-endo cyclization through kinetic control.  相似文献   
238.
A facile total synthesis of (+)-hernandulcin (1) was accomplished from (−)-isopulegol in 6 steps with 15% overall yield. Epoxidation of (−)-isopulegol with m-chloroperbenzoic acid followed by opening of the epoxide 3a with prenyl Grignard afforded the tertiary alcohol 4a with correct C-6 and C-1′ stereochemistry as a major product. Oxidation of the secondary alcohol in compound 4a to the ketone 5a was accomplished in high yield by using TPAP and N-methylmorpholine N-oxide. Conversion of the ketone 5a to α,β-unsaturated ketone via organoselenium intermediate gave (+)-hernandulcin (1). This method was also successfully applied to the synthesis of (+)-epihernandulcin (2).  相似文献   
239.
Single crystals of the first anhydrous thallium nickel phosphates were prepared by reaction of heterogeneous Tl/Ni/P alloys with oxygen. TlNi4(PO4)3 (pale‐yellow, orthorhombic, space group Cmc21, a = 6.441(2)Å, b = 16.410(4)Å, c = 9.624(2)Å, Z = 4) crystallizes with a structure closely related to that of NaNi4(PO4)3. Tl4Ni7(PO4)6 (yellow‐brown, monoclinic, space group Cm, a = 10.711(1)Å, b = 14.275(2)Å, c = 6.688(2)Å, β = 103.50(2)°, Z = 8) is isotypic with Na4Ni7(PO4)6, and Tl2Ni4(P2O7)(PO4)2 (brown, monoclinic, space group C2/c, a = 10.389(2)Å, b = 13.888(16)Å, c = 18.198(3)Å, β = 103.1(2)°, Z = 8) adopts the K2Ni4(P2O7)(PO4)2 structure. Tl2Ni4(P2O7)(PO4)2 could also be prepared in nearly single phase form by reaction of Tl2CO3, NiO, and (NH4)2HPO4.  相似文献   
240.
Biofuel cells are devices for generating electrical energy directly from chemical energy of renewable biomass using biocatalysts such as enzymes. Efficient electrical communication between redox enzymes and electrodes is essential for enzymatic biofuel cells. Carbon nanotubes (CNTs) have been recognized as ideal electrode materials because of their high electrical conductivity, large surface area, and inertness. Electrodes consisting entirely of CNTs, which are known as CNT paper, have high surface areas but are typically weak in mechanical strength. In this study, cellulose (CL)–CNT composite paper was fabricated as electrodes for enzymatic biofuel cells. This composite electrode was prepared by vacuum filtration of CNTs followed by reconstitution of cellulose dissolved in ionic liquid, 1-ethyl-3-methylimidazolium acetate. Glucose oxidase (GOx), which is a redox enzyme capable of oxidizing glucose as a renewable fuel using oxygen, was immobilized on the CL–CNT composite paper. Cyclic voltammograms revealed that the GOx/CL–CNT paper electrode showed a pair of well-defined peaks, which agreed well with that of FAD/FADH2, the redox center of GOx. This result clearly shows that the direct electron transfer (DET) between the GOx and the composite electrode was achieved. However, this DET was dependent on the type of CNTs. It was also found that the GOx immobilized on the composite electrode retained catalytic activity for the oxidation of glucose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号