首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   2篇
化学   522篇
晶体学   1篇
力学   2篇
数学   17篇
物理学   40篇
  2020年   3篇
  2019年   1篇
  2017年   2篇
  2016年   24篇
  2015年   25篇
  2014年   45篇
  2013年   36篇
  2012年   28篇
  2011年   63篇
  2010年   52篇
  2009年   45篇
  2008年   42篇
  2007年   46篇
  2006年   42篇
  2005年   50篇
  2004年   37篇
  2003年   37篇
  2002年   2篇
  2001年   2篇
排序方式: 共有582条查询结果,搜索用时 234 毫秒
71.
Polymer thin-film transistors (PTFTs) based on poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) semiconductor are fabricated by spin-coating process and characterized. In the experiments, solution preparation, deposition and device measurements are all performed in air for large-area applications. Hysteresis effect and gate-bias stress effect are observed for the devices at room temperature. The saturation current decreases and the threshold voltage shifts toward the negative direction upon gate-bias stress, but carrier mobility hardly changes. By using quasi-static C-V analysis for MOS capacitor structure, it can be deduced that the origin of threshold-voltage shift upon negative gate-bias stress is predominantly associated with hole trapping within the SiO2 gate dielectric near the SiO2/MEH-PPV interface due to hot-carrier emission.  相似文献   
72.
73.
74.
75.
76.
77.
78.
79.
Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.  相似文献   
80.
The most popular in vitro nucleic acid amplification techniques like polymerase chain reaction (PCR) including real-time PCR are costly and require thermocycling, rendering them unsuitable for uses at point-of-care. Highly efficient in vitro nucleic acid amplification techniques using simple, portable and low-cost instruments are crucial in disease diagnosis, mutation detection and biodefense. Toward this goal, isothermal amplification techniques that represent a group of attractive in vitro nucleic acid amplification techniques for bioanalysis have been developed. Unlike PCR where polymerases are easily deactivated by thermally labile constituents in a sample, some of the isothermal nucleic acid amplification techniques, such as helicase-dependent amplification and nucleic acid sequence-based amplification, enable the detection of bioanalytes with much simplified protocols and with minimal sample preparations since the entire amplification processes are performed isothermally. This review focuses on the isothermal nucleic acid amplification techniques and their applications in bioanalytical chemistry. Starting off from their amplification mechanisms and significant properties, the adoption of isothermal amplification techniques in bioanalytical chemistry and their future perspectives are discussed. Representative examples illustrating the performance and advantages of each isothermal amplification technique are discussed along with some discussion on the advantages and disadvantages of each technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号