首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3225篇
  免费   161篇
  国内免费   27篇
化学   2397篇
晶体学   27篇
力学   42篇
数学   282篇
物理学   665篇
  2024年   2篇
  2023年   16篇
  2022年   54篇
  2021年   93篇
  2020年   75篇
  2019年   76篇
  2018年   48篇
  2017年   59篇
  2016年   143篇
  2015年   97篇
  2014年   141篇
  2013年   248篇
  2012年   263篇
  2011年   276篇
  2010年   154篇
  2009年   137篇
  2008年   207篇
  2007年   208篇
  2006年   182篇
  2005年   178篇
  2004年   151篇
  2003年   110篇
  2002年   125篇
  2001年   40篇
  2000年   47篇
  1999年   31篇
  1998年   30篇
  1997年   26篇
  1996年   23篇
  1995年   14篇
  1994年   16篇
  1993年   30篇
  1992年   18篇
  1991年   6篇
  1990年   12篇
  1989年   11篇
  1988年   4篇
  1986年   3篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1982年   6篇
  1981年   7篇
  1980年   8篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1975年   5篇
  1973年   2篇
  1966年   1篇
排序方式: 共有3413条查询结果,搜索用时 31 毫秒
71.
72.
The enrichment of phosphopeptides using immobilized metal ion affinity chromatography (IMAC) and subsequent mass spectrometric analysis is a powerful protocol for detecting phosphopeptides and analyzing their phosphorylation state. However, nonspecific binding peptides, such as acidic, nonphosphorylated peptides, often coelute and make analyses of mass spectra difficult. This study used a partial chemical tagging reaction of a phosphopeptide mixture, enriched by IMAC and contaminated with nonspecific binding peptides, following a modified beta-elimination/Michael addition method, and dynamic mass analysis of the resulting peptide pool. Mercaptoethanol was used as a chemical tag and nitrilotriacetic acid (NTA) immobilized on Sepharose beads was used for IMAC enrichment. The time-dependent dynamic mass analysis of the partially tagged reaction mixture detected intact phosphopeptides and their mercaptoethanol-tagged derivatives simultaneously by their mass difference (-20 Da for each phosphorylation site). The number of new peaks appearing with the mass shift gave the number of multiply phosphorylated sites in a phosphopeptide. Therefore, this partial chemical tagging/dynamic mass analysis method can be a powerful tool for rapid and efficient phosphopeptide identification and analysis of the phosphorylation state concurrently using only MS analysis data.  相似文献   
73.
Abnormal anaerobic metabolism leads to a lowering of the pH of many tumours, both within specific intracellular organelles and in the surrounding extracellular regions. Information relating to pH-fluctuations in cells and tissues could aid in the identification of neoplastic lesions and in understanding the determinants of carcinogenesis. Here we report an amphiphilic fluorescent pH probe (CS-1) that, as a result of its temporal motion, provides pH-related information in cancer cell membranes and selected intracellular organelles without the need for specific tumour targeting. Time-dependent cell imaging studies reveal that CS-1 localizes within the cancer cell-membrane about 20 min post-incubation. This is followed by migration to the lysosomes at 30 min before being taken up in the mitochondria after about 60 min. Probe CS-1 can selectively label cancer cells and 3D cancer spheroids and be readily observed using the green fluorescence channel (λem = 532 nm). In contrast, CS-1 only labels normal cells marginally, with relatively low Pearson''s correlation coefficients being found when co-incubated with standard intracellular organelle probes. Both in vivo and ex vivo experiments provide support for the suggestion that CS-1 acts as a fluorescent label for the periphery of tumours, an effect ascribed to proton-induced aggregation. A much lower response is seen for muscle and liver. Based on the present results, we propose that sensors such as CS-1 may have a role to play in the clinical and pathological detection of tumour tissues or serve as guiding aids for surgery.

A self-assembled amphiphilic fluorescent probe allows pH-fluctuations within cancer cells and tumour tissues to be readily detected.  相似文献   
74.
Photodissociation (PD) tandem mass spectra have been obtained at 266 nm for the protonated molecules of a tryptic peptide, ASHLGLAR, and of its phenyl isothiocyanate and 4-sulfophenyl isothiocyanate derivatives, generated by matrix-assisted laser desorption/ionization. Derivatization with the aromatic chromophores greatly reduced the intensity of the laser required for efficient PD. Major fragment ions observed in the three spectra are quite similar. General features of the PD tandem mass spectra and their potential utility for analytical purposes are discussed.  相似文献   
75.
The catalytic epoxidation of cyclohexene by iron(III) porphyrin complexes and H2O2 has been investigated in alcohol solvents to understand factors affecting the catalyst activity in protic solvents. The yields of cyclohexene oxide and the Fe(III/II) reduction potentials of iron porphyrin complexes were significantly affected by the protic solvents, and there was a close correlation between the product yields and the reduction potentials of the iron porphyrin catalysts. The role of alcohol solvents was proposed to control the electronic nature of iron porphyrin complexes that determines the catalyst activity in the epoxidation of olefins by H2O2. We have also demonstrated that an electron-deficient iron porphyrin complex can catalyze the epoxidation of olefins by H2O2 under conditions of limiting substrate with high conversion efficiency in a solvent mixture of CH3OH and CH2Cl2.  相似文献   
76.
Acetylcholinesterase (AChE) is an extremely critical hydrolase tightly associated with neurological diseases. Currently, developing specific substrates for imaging AChE activity still remains a great challenge due to the interference from butyrylcholinesterase (BChE) and carboxylesterase (CE). Herein, we propose an approach to designing specific substrates for AChE detection by combining dimethylcarbamate choline with a self-immolative scaffold. The representative P10 can effectively eliminate the interference from CE and BChE. The high specificity of P10 has been proved via imaging AChE activity in cells. Moreover, P10 can also be used to successfully map AChE activity in different regions of a normal mouse brain, which may provide important data for AChE evaluation in clinical studies. Such a rational and effective approach can also provide a solid basis for designing probes with different properties to study AChE in biosystems and another way to design specific substrates for other enzymes.

In this work, a new approach was developed for designing the representative P10 with high selectivity and sensitivity for imaging AChE activity in the cells and normal mouse brain.  相似文献   
77.
p21-activated kinase (PAK)-interacting exchange factor (PIX) is known to be involved in regulation of Cdc42/Rac GTPases and PAK activity. PIX binds to the proline-rich region of PAK, and regulates biological events through activation of Cdc42/Rac GTPase. To further investigate the role of PIX we produced monoclonal antibodies (Mab) against bPIX. Three clones; N-C6 against N-terminal half and C-A3 and C-B7 against C- terminal half of bPIX were generated and characterized. N-C6 Mab detected bPIX as a major band in most cell lines. C-A3 Mab recognizes GIT-binding domain (GBD), but it does not interfere with GIT binding to bPIX. Using C-A3 Mab possible bPIX interaction with actin in PC12 cells was examined. bPIX Mab (C-A3) specifically precipitated actin of the PC12 cell lysates whereas actin Mab failed to immunoprecipitate bPIX. Co-sedimentation of PC12 cell lysates with the polymerized F-actin resulted in the recovery of most of bPIX in the cell lysates. These results suggest that bPIX may not interact with soluble actin but with polymerized F-actin and revealed that bPIX constitutes a functional complex with actin. These data indicate real usefulness of the bPIX Mab in the study of bPIX role(s) in regulation of actin cyoskeleton.  相似文献   
78.
Oh CH  Jung SH  Bang SY  Park DI 《Organic letters》2002,4(19):3325-3327
[reaction: see text] Unusual palladium-catalyzed arylative fragmentations of acyclic 3-allen-1-ols were observed. Oxidative addition of Pd(0) to aryl halides would form the arylpalladium halides, which added to the central carbon of allenes via carbopalladation to form the pi-allylpalladium intermediates. The pi-allylpalladium intermediates would be reductively eliminated via carbon-carbon cleavage to give the arylated dienes and the alpha-hydroxyalkylpalladium intermediates, which were further reductively eliminated to the corresponding aldehydes.  相似文献   
79.
During radiotherapy of cancer, neighboring normal cells may receive sub-lethal doses of radiation. To investigate whether such low levels of radiation modulate normal cell responses to death stimuli, primary cultured human fibroblasts were exposed to various doses of gamma-rays. Analysis of cell viability using an exclusion dye propidium iodide revealed that the irradiation up to 10 Gy killed the fibroblasts only to a minimal extent. In contrast, the cells efficiently lost their viability when exposed to 0.5-0.65 mM H(2)O(2). This type of cell death was accompanied by JNK activation, and was reversed by the use of a JNK-specific inhibitor SP600125. Interestingly, H(2)O(2) failed to kill the fibroblasts when these cells were pre-irradiated, 24 h before H(2)O(2) treatment, with 0.25-0.5 Gy of gamma-rays. These cytoprotective doses of gamma-rays did not enhance cellular capacity to degrade H(2)O(2), but elevated cellular levels of p21(Cip/WAF1), a p53 target that can suppress H(2)O(2)-induced cell death by blocking JNK activation. Consistently, H(2)O(2)-induced JNK activation was dramatically suppressed in the pre-irradiated cells. The overall data suggests that ionizing radiation can impart normal fibroblasts with a survival advantage against oxidative stress by blocking the process leading to JNK activation.  相似文献   
80.
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with age as a major risk factor. AD is the most common dementia with abnormal structures, including extracellular senile plaques and intraneuronal neurofibrillary tangles, as key neuropathologic hallmarks. The early feature of AD pathology is degeneration of the locus coeruleus (LC), which is the main source of norepinephrine (NE) supplying various cortical and subcortical areas that are affected in AD. The spread of Tau deposits is first initiated in the LC and is transported in a stepwise manner from the entorhinal cortex to the hippocampus and then to associative regions of the neocortex as the disease progresses. Most recently, we reported that the NE metabolite DOPEGAL activates delta-secretase (AEP, asparagine endopeptidase) and triggers pathological Tau aggregation in the LC, providing molecular insight into why LC neurons are selectively vulnerable to developing early Tau pathology and degenerating later in the disease and how δ-secretase mediates the spread of Tau pathology to the rest of the brain. This review summarizes our current understanding of the crucial role of δ-secretase in driving and spreading AD pathologies by cleaving multiple critical players, including APP and Tau, supporting that blockade of δ-secretase may provide an innovative disease-modifying therapeutic strategy for treating AD.Subject terms: Neurodegeneration, Alzheimer''s disease  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号