首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1653篇
  免费   37篇
  国内免费   9篇
化学   928篇
晶体学   8篇
力学   31篇
数学   315篇
物理学   417篇
  2023年   11篇
  2022年   30篇
  2021年   20篇
  2020年   29篇
  2019年   28篇
  2018年   25篇
  2017年   12篇
  2016年   41篇
  2015年   40篇
  2014年   42篇
  2013年   77篇
  2012年   81篇
  2011年   106篇
  2010年   63篇
  2009年   41篇
  2008年   84篇
  2007年   91篇
  2006年   78篇
  2005年   78篇
  2004年   67篇
  2003年   57篇
  2002年   67篇
  2001年   16篇
  2000年   18篇
  1999年   20篇
  1998年   17篇
  1997年   17篇
  1996年   27篇
  1995年   14篇
  1994年   15篇
  1993年   17篇
  1992年   17篇
  1991年   18篇
  1990年   14篇
  1989年   11篇
  1988年   11篇
  1987年   12篇
  1986年   11篇
  1985年   11篇
  1984年   23篇
  1983年   12篇
  1982年   14篇
  1981年   20篇
  1980年   15篇
  1979年   13篇
  1977年   20篇
  1976年   10篇
  1975年   13篇
  1974年   23篇
  1973年   12篇
排序方式: 共有1699条查询结果,搜索用时 15 毫秒
41.
42.
43.
The CO2 in the cathode exhaust of a liquid feed direct methanol fuel cell (DMFC) has two sources: methanol diffuses through the membrane electrode assembly (MEA) to the cathode where it is catalytically oxidized to CO2; additionally, a portion of the CO2 produced at the anode diffuses through the MEA to the cathode. The potential-dependent CO2 exhaust from the cathode was monitored by online electrochemical mass spectrometry (ECMS) with air and with H2 at the cathode. The precise determination of the crossover rates of methanol and CO2, enabled by the subtractive normalization of the methanol/air to the methanol/H2 ECMS data, shows that methanol decreases the membrane viscosity and thus increases the diffusion coefficients of sorbed membrane components. The crossover of CO2 initially increases linearly with the Faradaic oxidation of methanol, reaches a temperature-dependent maximum, and then decreases. The membrane viscosity progressively increases as methanol is electrochemically depleted from the anode/electrolyte interface. The crossover maximum occurs when the current dependence of the diffusion coefficients and membrane CO2 solubility dominate over the Faradaic production of CO2. The plasticizing effect of methanol is corroborated by measurements of the rotational diffusion of TEMPONE (2,2,6,6-tetramethyl-4-piperidone N-oxide) spin probe by electron spin resonance spectroscopy. A linear inverse relationship between the methanol crossover rate and current density confirms the absence of methanol electro-osmotic drag at concentrations relevant to operating DMFCs. The purely diffusive transport of methanol is explained in terms of current proton solvation and methanol-water incomplete mixing theories.  相似文献   
44.
The flavonoid content of several methanolic extract fractions of Navel orange peel (flavedo and albedo of Citrus sinensis) cultivated in Crete (Greece) was first analysed phytochemically and then assessed for its antioxidant activity in vitro. The chemical structures of the constituents fractionated were originally determined by comparing their retention times and the obtained UV spectral data with the available bibliographic data and further verified by detailed LC-DAD-MS (ESI+) analysis. The main flavonoid groups found within the fractions examined were polymethoxylated flavones, O-glycosylated flavones, C-glycosylated flavones, O-glycosylated flavonols, O-glycosylated flavanones and phenolic acids along with their ester derivatives. In addition, the quantitative HPLC analysis confirmed that hesperidin is the major flavonoid glycoside found in the orange peel. Interestingly enough, its quantity at 48 mg/g of dry peel permits the commercial use of orange peel as a source for the production of hesperidin. The antioxidant activity of the orange peel methanolic extract fractions was evaluated by applying two complementary methodologies, DPPH(*) assay and the Co(II)/EDTA-induced luminol chemiluminescence approach. Overall, the results have shown that orange peel methanolic extracts possess moderate antioxidant activity as compared with the activity seen in tests where the corresponding aglycones, diosmetin and hesperetin were assessed in different ratios.  相似文献   
45.
Complete structure determination of an early-generation dendrimeric material has been carried out directly from powder X-ray diffraction data, using the direct-space genetic algorithm technique for structure solution followed by Rietveld refinement. This work represents the first application of modern direct-space techniques for structure determination from powder X-ray diffraction data in the case of a dendrimeric material and paves the way for the future application of this approach to enable complete structure determination of other dendrimeric materials that cannot be prepared as single crystal samples suitable for single crystal X-ray diffraction studies.  相似文献   
46.
Noncovalent functionalization of graphene with organic molecules offers a direct route to multifunctional modification of this nanomaterial, leading to its various possible practical applications. In this work, the structures of hybrids formed by linear heterocyclic compounds such as imidazophenazine (F1) and its derivatives (F2‐F4) with graphene and the corresponding interaction energies are studied by using the DFT method. Special attention is paid to the hybrids where the attached molecule is located along the graphene zigzag ( GZZ) and armchair ( GAC ) directions. The interaction energies corresponding to the graphene hybrids of the F1‐F4 compounds for the two directions are found to be distinct, while tetracene (being a symmetrical molecule) shows a small difference between these binding energies. It is found that the back‐side CH3 and CF3 groups have an important influence on the arrangements of F1 derivatives on graphene and on their binding energies. The contribution of the CF3 group to the total binding energy of the F3 molecule with graphene is the largest (3.4 kcal mol?1) (the GZZ direction) while the CH3 group increases this energy of F2 only by 2.0 kcal mol?1 (the GAC direction). It is shown that replacing the carbons with other atoms or adding a back‐side group enables one to vary the polarizability of graphene.  相似文献   
47.
Abstract— Psoralens are a class of pharmaceutical agents commonly used to treat several cutaneous disorders. When irradiated with a mode-locked titanium: sapphire (Ti: sapphire) laser tuned to 730 nm, an aqueous solution of 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) emits blue light. The emission spectrum is centered at 452 nm and is identical to that obtained by one-photon excitation with UVA excitation, and its magnitude depends quad-ratically on the intensity of laser excitation. These results suggest that two-photon excitation occurs to a potentially photochemically active state. To estimate the two-photon absorption cross section, it was first necessary to measure the emission quantum yield of HMT using 365 nm excitation at room temperature that resulted in a value of 0.045 ± 0.007. The two-photon absorption cross section of HMT at 730 nm is therefore estimated to be 20 ± 10−50 cm4 s (20 Göppert-Mayer). The excited-state photophysics and photochemistry of psoralens suggest potential applications to cutaneous phototherapy in diseases such as psoriasis and dystrophic epidermolysis bullosa.  相似文献   
48.
The scope and limitations of direct arylation of fluorinated aromatics with aryl sulfonates was examined. Pd(OAc)(2), in the presence of MePhos and KOAc in THF, efficiently catalyzed the direct arylation of fluoro aromatics with aryl triflates under ambient conditions. Sterically hindered triflates and heteroaryl triflates gave good to excellent yields of the cross coupled products using a modified catalyst system which involves Pd(OAc)(2)-RuPhos at 100 °C. The direct arylation of electron deficient arenes with aryl mesylates is also established using Pd(OAc)(2)-SPhos as the catalyst in toluene-(t)BuOH at 120 °C.  相似文献   
49.
An amphiphilic heteroarm star polymer containing 12 alternating hydrophobic/hydrophilic arms of polystyrene (PS) and poly(acrylic acid) (PAA) connected to a well-defined rigid aromatic core was studied at the air-water and the air-solid interfaces. At the air-water interface, the molecules spontaneously form pancakelike micellar aggregates which measure up to several microns in diameter and 5 nm in thickness. Upon reduction of the surface area per molecule to 7 nm2, the two-dimensional micelles merged into a dense monolayer. We suggest that confined phase separation of dissimilar polymer arms occurred upon their segregation on the opposite sides of the rigid disklike aromatic core, forcing the rigid cores to adopt a face-on orientation with respect to the interface. Upon transfer onto solid supports the PS chains face the air-film interface making it completely hydrophobic, and the PAA chains were found to collapse and form a thin flattened underlayer. This study points toward new strategies to create large 2D microstructures with facial amphiphilicity and suggests a profound influence of star molecular architecture on the self-assembly of amphiphiles at the air-water interface.  相似文献   
50.
A low, but significant, fraction of the carbohydrate portion of herbaceous biomass may be composed of fructose/fructosyl-containing components (“fructose equivalents”); such carbohydrates include sucrose, fructooligosaccharides, and fructans. Standard methods used for the quantification of structural-carbohydrate-derived neutral monosaccharide equivalents in biomass are not particularly well suited for the quantification of fructose equivalents due to the inherent instability of fructose in conditions commonly used for hemicellulose/cellulose hydrolysis (>80% degradation of fructose standards treated at 4% sulfuric acid, 121°C, 1 h). Alternative time, temperature, and acid concentration combinations for fructan hydrolysis were considered using model fructans (inulin, β-2,1, and levan, β-2,6) and a grass seed straw (tall fescue, Festuca arundinacea) as representative feedstocks. The instability of fructose, relative to glucose and xylose, at higher acid/temperature combinations is demonstrated, all rates of fructose degradation being acid and temperature dependent. Fructans are shown to be completely hydrolyzed at acid concentrations well below that used for the structural carbohydrates, as low as 0.2%, at 121°C for 1 h. Lower temperatures are also shown to be effective, with corresponding adjustments in acid concentration and time. Thus, fructans can be effectively hydrolyzed under conditions where fructose degradation is maintained below 10%. Hydrolysis of the β-2,1 fructans at temperatures ≥50°C, at all conditions consistent with complete hydrolysis, appears to generate difructose dianhydrides. These same compounds were not detected upon hydrolysis of levan, sucrose, or straw components. It is suggested that fructan hydrolysis conditions be chosen such that hydrolysis goes to completion; fructose degradation is minimized, and difructose dianhydride production is accounted for.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号