首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   8篇
化学   158篇
数学   23篇
物理学   4篇
  2023年   3篇
  2022年   3篇
  2021年   12篇
  2020年   4篇
  2019年   7篇
  2018年   5篇
  2017年   7篇
  2016年   10篇
  2015年   10篇
  2014年   5篇
  2013年   10篇
  2012年   12篇
  2011年   9篇
  2010年   11篇
  2009年   6篇
  2008年   10篇
  2007年   14篇
  2006年   5篇
  2005年   15篇
  2004年   5篇
  2003年   9篇
  2002年   5篇
  2001年   1篇
  1984年   1篇
  1981年   2篇
  1966年   1篇
  1957年   3篇
排序方式: 共有185条查询结果,搜索用时 296 毫秒
61.
The fragments of rat amylin rIAPP(17-29) (Ac-VRSSNNLGPVLPP-NH(2)), rIAPP(17-22) (Ac-VRSSNN-NH(2)), rIAPP(19-22) (Ac-SSNN-NH(2)) and rIAPP(17-20) (Ac-VRSS-NH(2)) together with the related mutant peptides (Ac-VASS-NH(2) and Ac-VRAA-NH(2)) have been synthesized and their copper(II) complexes studied by potentiometric, UV-Vis, CD and EPR spectroscopic methods. Despite the lack of any common strongly coordinating donor functions some of these fragments are able to bind copper(II) ions in the physiological pH range. The longest fragment rat amylin(17-29) keeps one equivalent copper(II) ion in solution in the whole pH range, while two other peptides Ac-VRSSNN-NH(2) and Ac-SSNN-NH(2) are also able to interact with copper(II) ions in the slightly alkaline pH range. According to the spectral parameters of the complexes, the peptides can be classified into two different categories: (i) the tetrapeptides Ac-VRSS-NH(2), Ac-VASS-NH(2) and Ac-VRAA-NH(2) can interact with copper(II) only under strongly alkaline conditions (pH > 10.0) and the formation of only one species with four amide nitrogen coordination can be detected; (ii) the peptides Ac-VRSSNNLGPVLPP-NH(2), Ac-VRSSNN-NH(2) and Ac-SSNN-NH(2) can form complexes above pH 6.0 with the major stoichiometries [CuH(-2)L], [CuH(-3)L](-) and [CuH(-4)L](2-). These data support that rIAPP(17-29) can interact with copper(II) ions under physiological conditions and the SSNN tetrapeptide fragment can be considered as the shortest sequence responsible for metal binding. Density functional theory (DFT) calculations provide some information on the possible coordination modes of Ac-SSNN-NH(2) towards the copper(II) ion and suggest that for [CuH(-2)L], [CuH(-3)L](-) and [CuH(-4)L](2-), the binding of two, three and four deprotonated amide nitrogens, with NH(-) of the side chain of asparagine as anchoring group, is probable. Moreover, these data reveal that peptides can be effective metal binding ligands even in the absence of anchoring groups, if more polar side chains are present in a specific sequence.  相似文献   
62.
Primary carbohydrate amines at primary and secondary carbons are alkylated by alcohols in the presence of [Cp*IrCl(2)](2). When primary carbohydrate alcohols are used as the coupling partners and in the presence of Cs(2)CO(3), amine-linked pseudodisaccharides are obtained. Secondary carbohydrate alcohols are unaffected under these conditions, which allows regioselective reactions.  相似文献   
63.
The present work is the fourth (and final) contribution to an inter-laboratory collaboration that was planned at the 3rd International Summit on Organic Photovoltaic Stability (ISOS-3). The collaboration involved six laboratories capable of producing seven distinct sets of OPV devices that were degraded under well-defined conditions in accordance with the ISOS-3 protocols. The degradation experiments lasted up to 1830 hours and involved more than 300 cells on more than 100 devices. The devices were analyzed and characterized at different points of their lifetimes by a large number of non-destructive and destructive techniques in order to identify specific degradation mechanisms responsible for the deterioration of the photovoltaic response. Work presented herein involves time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to study chemical degradation in-plane as well as in-depth in the organic solar cells. Various degradation mechanisms were investigated and correlated with cell performance. For example, photo-oxidation of the active material was quantitatively studied as a function of cell performance. The large variety of cell architectures used (some with and some without encapsulation) enabled valuable comparisons and important conclusions to be drawn on degradation behaviour. This comprehensive investigation of OPV stability has significantly advanced the understanding of degradation behaviour in OPV devices, which is an important step towards large scale application of organic solar cells.  相似文献   
64.
The coordination properties of N,N′‐bis[4‐(4‐pyridyl)phenyl]acenaphthenequinonediimine (L1) and N,N′‐bis[4‐(2‐pyridyl)phenyl]acenaphthenequinonediimine (L2) were investigated in self‐assembly with palladium diphosphane complexes [Pd(P^P)(H2O)2](OTf)2 (OTf=triflate) by using various analytical techniques, including multinuclear (1H, 15N, and 31P) NMR spectroscopy and mass spectrometry (P^P=dppp, dppf, dppe; dppp=bis(diphenylphosphanyl)propane, dppf= bis(diphenylphosphanyl)ferrocene, and dppe=bis(diphenylphosphanyl)ethane). Beside the expected trimeric and tetrameric species, the interaction of an equimolar mixture of [Pd(dppp)]2+ ions and L1 also generates pentameric aggregates. Due to the E/Z isomerism of L1, a dimeric product was also observed. In all of these species, which correspond to the general formula [Pd(dppp)L1]n(OTf)2n (n=2–5), the L1 ligand is coordinated to the Pd center only through the terminal pyridyl groups. Introduction of a second equivalent of the [Pd(dppp)]2+ tecton results in coordination to the internal, sterically more encumbered chelating site and induces enhancement of the higher nuclearity components. The presence of higher‐order aggregates (n=5, 6), which were unexpected for the interaction of cis‐protected palladium corners with linear ditopic bridging ligands, has been demonstrated both by mass‐spectrometric and DOSY NMR spectroscopic analysis. The sequential coordination of the [Pd(dppp)]2+ ion is attributed to the dissimilar steric properties of the two coordination sites. In the self‐assembled species formed in a 1:1:1 mixture of [Pd(dppp)]2+/[Pd(dppe)]2+/L1, the sterically more demanding [Pd(dppp)]2+ tectons are attached selectively to the pyridyl groups, whereas the more hindered imino nitrogen atoms coordinate the less bulky dppe complexes, thus resulting in a sterically directed, size‐selective sorting of the metal tectons. The propensity of the new ligands to incorporate hydrogen‐bonded solvent molecules at the chelating site was confirmed by X‐ray diffraction studies.  相似文献   
65.

The main purpose of this study is numerically investigating the flow and heat transfer of nanofluid flow inside a microchannel with L-shaped porous ribs as well as studying the effect of porous media properties on the performance evaluation criterion (PEC) of the fluid. In the present paper, in addition to the pure water fluid, the effect of using water/CuO nanofluid on the PEC of microchannel was investigated. The flow was simulated in four Reynolds numbers and two different volume fractions of nanoparticles in laminar flow regime. The investigated parameters are the thermal conductivity and the porosity rate of porous medium. The results indicate that with the existence of porous ribs, the nanofluid does not have a significant effect on heat transfer increase. By using porous ribs in flow with Reynolds number of 1200, the heat transfer rate increases up to 42% and in flow with Reynolds number of 100, this rate increases by 25%.

  相似文献   
66.
Determination of the environment surrounding a protein is often key to understanding its function and can also be used to infer the structural properties of the protein. By using proton-detected solid-state NMR, we show that reduced spin diffusion within the protein under conditions of fast magic-angle spinning, high magnetic field, and sample deuteration allows the efficient measurement of site-specific exposure to mobile water and lipids. We demonstrate this site specificity on two membrane proteins, the human voltage dependent anion channel, and the alkane transporter AlkL from Pseudomonas putida. Transfer from lipids is observed selectively in the membrane spanning region, and an average lipid-protein transfer rate of 6 s−1 was determined for residues protected from exchange. Transfer within the protein, as tracked in the 15N-1H 2D plane, was estimated from initial rates and found to be in a similar range of about 8 to 15 s−1 for several resolved residues, explaining the site specificity.  相似文献   
67.
In the presence of sufficient concentrations of water, stable, hydrated hydronium ions are formed in the pores and at the surface of solid acids such as zeolites. For a medium‐pore zeolite, such as zeolite MFI, hydrated hydronium ions consist of eight water molecules and have an effective volume of 0.24 nm3. In their presence, larger organic molecules can only adsorb in the portions of the pore that are not occupied by hydronium ions. As a consequence, the available pore volume decreases proportionally to the concentration of the hydronium ions. The higher charge density (the increasing ionic strength) that accompanies an increasing concentration of hydronium ions leads to an increase in the activity coefficients of the adsorbed substrates, thus, weakening the interactions between the organic part of the molecules and the zeolite and favoring the interactions with polar groups. The quantitative understanding of these interactions makes it possible to link a collective property such as hydrophilicity and hydrophobicity of zeolites to specific interactions on molecular level.  相似文献   
68.
Scots pine (SO) and clove (CO) essential oils (EOs) are commonly used by inhalation, and their main components are shown to reduce inflammatory mediator production. The aim of our research was to investigate the chemical composition of commercially available SO and CO by gas chromatography–mass spectrometry and study their effects on airway functions and inflammation in an acute pneumonitis mouse model. Inflammation was evoked by intratracheal endotoxin and EOs were inhaled three times during the 24 h experimental period. Respiratory function was analyzed by unrestrained whole-body plethysmography, lung inflammation by semiquantitative histopathological scoring, myeloperoxidase (MPO) activity and cytokine measurements. α-Pinene (39.4%) was the main component in SO, and eugenol (88.6%) in CO. Both SO and CO significantly reduced airway hyperresponsiveness, and prevented peak expiratory flow, tidal volume increases and perivascular edema formation. Meanwhile, inflammatory cell infiltration was not remarkably affected. In contrast, MPO activity and several inflammatory cytokines (IL-1β, KC, MCP-1, MIP-2, TNF-α) were aggravated by both EOs. This is the first evidence that SO and CO inhalation improve airway function, but enhance certain inflammatory parameters. These results suggest that these EOs should be used with caution in cases of inflammation-associated respiratory diseases.  相似文献   
69.
Sulfonated carbons were explored as functionalized supports for Ni nanoparticles to hydrodeoxygenate (HDO) phenol. Both hexadecane and water were used as solvents. The dual‐functional Ni catalysts supported on sulfonated carbon (Ni/C‐SO3H) showed high rates for phenol hydrodeoxygenation in liquid hexadecane, but not in water. Glucose and cellulose were precursors to the carbon supports. Changes in the carbons resulting from sulfonation of the carbons resulted in variations of carbon sheet structures, morphologies and the surface concentrations of acid sites. While the C‐SO3H supports were active for cyclohexanol dehydration in hexadecane and water, Ni/C‐SO3H only catalysed the reduction of phenol to cyclohexanol in water. The state of 3–5 nm grafted Ni particles was analysed by in situ X‐ray absorption spectroscopy. The results show that the metallic Ni was rapidly formed in situ without detectable leaching to the aqueous phase, suggesting that just the acid functions on Ni/C‐SO3H are inhibited in the presence of water. Using in situ IR spectroscopy, it was shown that even in hexadecane, phenol HDO is limited by the dehydration step. Thus, phenol HDO catalysis was further improved by physically admixing C‐SO3H with the Ni/C‐SO3H catalyst to balance the two catalytic functions. The minimum addition of 7 wt % C‐SO3H to the most active of the Ni/C‐SO3H catalysts enabled nearly quantitative conversion of phenol and the highest selectivity (90 %) towards cyclohexane in 6 h, at temperatures as low as 473 K, suggesting that the proximity to Ni limits the acid properties of the support.  相似文献   
70.
Góth L  Vitai M  Rass P  Sükei E  Páy A 《Electrophoresis》2005,26(9):1646-1649
The enzyme catalase is the main regulator of hydrogen peroxide metabolism. Recent findings suggest that a low concentration of hydrogen peroxide may act as a messenger in some signalling pathways whereas high concentrations are toxic for many cells and cell components. Acatalasemia is a genetically heterogeneous condition with a worldwide distribution. Yet only two Japanese and three Hungarian syndrome-causing mutations have been reported. A large-scale (23 130 subjects) catalase screening program in Hungary yielded 12 hypocatalasemic families. The V family with four hypocatalasemics (60.6 +/- 7.6 MU/L) and six normocatalasemic (103.6 +/- 23.5 MU/L) members was examined to define the mutation causing the syndrome. Mutation screening yielded four novel polymorphisms. Of these, three intron sequence variations, namely G-->A at the nucleotide 60 position in intron 1, T-->A at position 11 in intron 2, and G-->T at position 31 in intron 12, are unlikely to be responsible for the decreased blood catalase activity. However, the novel G-->A mutation in exon 9 changes the essential amino acid Arg 354 to Cys 354 and may indeed be responsible for the decreased catalase activity. This inherited catalase deficiency, by inducing an increased hydrogen peroxide steady-state concentration in vivo, may be involved in the early manifestation of type 2 diabetes mellitus for the 35-year old proband.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号