首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   476篇
  免费   17篇
化学   325篇
晶体学   2篇
力学   6篇
数学   73篇
物理学   87篇
  2023年   3篇
  2022年   7篇
  2021年   15篇
  2020年   10篇
  2019年   11篇
  2018年   7篇
  2017年   10篇
  2016年   22篇
  2015年   16篇
  2014年   18篇
  2013年   31篇
  2012年   32篇
  2011年   39篇
  2010年   19篇
  2009年   18篇
  2008年   35篇
  2007年   31篇
  2006年   20篇
  2005年   28篇
  2004年   17篇
  2003年   13篇
  2002年   10篇
  2001年   6篇
  2000年   12篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1994年   6篇
  1993年   2篇
  1991年   2篇
  1987年   4篇
  1984年   5篇
  1983年   2篇
  1981年   4篇
  1980年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   5篇
  1973年   3篇
  1966年   1篇
  1960年   1篇
  1958年   2篇
  1957年   3篇
  1956年   1篇
  1939年   1篇
排序方式: 共有493条查询结果,搜索用时 15 毫秒
381.
Solid-state NMR (ssNMR) is a versatile technique that can be used for the characterization of various materials, ranging from small molecules to biological samples, including membrane proteins. ssNMR can probe both the structure and dynamics of membrane proteins, revealing protein function in a near-native lipid bilayer environment. The main limitation of the method is spectral resolution and sensitivity, however recent developments in ssNMR hardware, including the commercialization of 28 T magnets (1.2 GHz proton frequency) and ultrafast MAS spinning (<100 kHz) promise to accelerate acquisition, while reducing sample requirement, both of which are critical to membrane protein studies. Here, we review recent advances in ssNMR methodology used for structure determination of membrane proteins in native and mimetic environments, as well as the study of protein functions such as protein dynamics, and interactions with ligands, lipids and cholesterol.

Solid-state NMR (ssNMR) is a versatile technique that can be used for the characterization of various materials, ranging from small molecules to biological samples, including membrane proteins, as reviewed here.  相似文献   
382.
Black cumin (Nigella sativa L., Ranunculaceae) is an annual herb commonly used in the Middle East, India and nowadays gaining worldwide acceptance. Historical and traditional uses are extensively documented in ancient texts and historical documents. Black cumin seeds and oil are commonly used as a traditional tonic and remedy for many ailments as well as in confectionery and bakery. Little is known however about the mechanisms that allow the accumulation and localization of its active components in the seed. Chemical and anatomical evidence indicates the presence of active compounds in seed coats. Seed volatiles consist largely of olefinic and oxygenated monoterpenes, mainly p-cymene, thymohydroquinone, thymoquinone, γ-terpinene and α-thujene, with lower levels of sesquiterpenes, mainly longifolene. Monoterpene composition changes during seed maturation. γ-Terpinene and α-thujene are the major monoterpenes accumulated in immature seeds, and the former is gradually replaced by p-cymene, carvacrol, thymo-hydroquinone and thymoquinone upon seed development. These compounds, as well as the indazole alkaloids nigellidine and nigellicine, are almost exclusively accumulated in the seed coat. In contrast, organic and amino acids are primarily accumulated in the inner seed tissues. Sugars and sugar alcohols, as well as the amino alkaloid dopamine and the saponin α-hederin accumulate both in the seed coats and the inner seed tissues at different ratios. Chemical analyses shed light to the ample traditional and historical uses of this plant.  相似文献   
383.
Hereby we present the synthesis of several ruthenium(II) and ruthenium(III) dithiocarbamato complexes. Proceeding from the Na[trans‐RuIII(dmso)2Cl4] ( 2 ) and cis‐[RuII(dmso)4Cl2] ( 3 ) precursors, the diamagnetic, mixed‐ligand [RuIIL2(dmso)2] complexes 4 and 5 , the paramagnetic, neutral [RuIIIL3] monomers 6 and 7 , the antiferromagnetically coupled ionic α‐[RuIII2L5]Cl complexes 8 and 9 as well as the β‐[RuIII2L5]Cl dinuclear species 10 and 11 (L=dimethyl‐ (DMDT) and pyrrolidinedithiocarbamate (PDT)) were obtained. All the compounds were fully characterised by elemental analysis as well as 1H NMR and FTIR spectroscopy. Moreover, for the first time the crystal structures of the dinuclear β‐[RuIII2(dmdt)5]BF4 ? CHCl3 ? CH3CN and of the novel [RuIIL2(dmso)2] complexes were also determined and discussed. For both the mono‐ and dinuclear RuII and RuIII complexes the central metal atoms assume a distorted octahedral geometry. Furthermore, in vitro cytotoxicity of the complexes has been evaluated on non‐small‐cell lung cancer (NSCLC) NCI‐H1975 cells. All the mono‐ and dinuclear RuIII dithiocarbamato compounds (i.e., complexes 6 – 10 ) show interesting cytotoxic activity, up to one order of magnitude higher with respect to cisplatin. Otherwise, no significant antiproliferative effect for either the precursors 2 and 3 or the RuII complexes 4 and 5 has been observed.  相似文献   
384.
Template-assisted formation of multicomponent Pd(6) coordination prisms and formation of their self-templated triply interlocked Pd(12) analogues in the absence of an external template have been established in a single step through Pd-N/Pd-O coordination. Treatment of cis-[Pd(en)(NO(3))(2)] with K(3) tma and linear pillar 4,4'-bpy (en=ethylenediamine, H(3) tma=benzene-1,3,5-tricarboxylic acid, 4,4'-bpy=4,4'-bipyridine) gave intercalated coordination cage [{Pd(en)}(6)(bpy)(3)(tma)(2)](2)[NO(3)](12) (1) exclusively, whereas the same reaction in the presence of H(3) tma as an aromatic guest gave a H(3) tma-encapsulating non-interlocked discrete Pd(6) molecular prism [{Pd(en)}(6)(bpy)(3)(tma)(2)(H(3)tma)(2)][NO(3)](6) (2). Though the same reaction using cis-[Pd(NO(3))(2)(pn)] (pn=propane-1,2-diamine) instead of cis-[Pd(en)(NO(3))(2)] gave triply interlocked coordination cage [{Pd(pn)}(6)(bpy)(3)(tma)(2)](2)[NO(3)](12) (3) along with non-interlocked Pd(6) analogue [{Pd(pn)}(6)(bpy)(3) (tma)(2)](NO(3))(6) (3'), and the presence of H(3) tma as a guest gave H(3) tma-encapsulating molecular prism [{Pd(pn)}(6)(bpy)(3)(tma)(2)(H(3) tma)(2)][NO(3)](6) (4) exclusively. In solution, the amount of 3' decreases as the temperature is decreased, and in the solid state 3 is the sole product. Notably, an analogous reaction using the relatively short pillar pz (pz=pyrazine) instead of 4,4'-bpy gave triply interlocked coordination cage [{Pd(pn)}(6) (pz)(3)(tma)(2)](2)[NO(3)](12) (5) as the single product. Interestingly, the same reaction using slightly more bulky cis-[Pd(NO(3))(2)(tmen)] (tmen=N,N,N',N'-tetramethylethylene diamine) instead of cis-[Pd(NO(3))(2)(pn)] gave non-interlocked [{Pd(tmen)}(6)(pz)(3)(tma)(2)][NO(3)](6) (6) exclusively. Complexes 1, 3, and 5 represent the first examples of template-free triply interlocked molecular prisms obtained through multicomponent self-assembly. Formation of the complexes was supported by IR and multinuclear NMR ((1)H and (13)C) spectroscopy. Formation of guest-encapsulating complexes (2 and 4) was confirmed by 2D DOSY and ROESY NMR spectroscopic analyses, whereas for complexes 1, 3, 5, and 6 single-crystal X-ray diffraction techniques unambiguously confirmed their formation. The gross geometries of H(3) tma-encapsulating complexes 2 and 4 were obtained by universal force field (UFF) simulations.  相似文献   
385.
A new strategy for accessing analyte-responsive luminescent probes is presented. The lanthanide luminescence of Eu and Tb centers is switched on by the analyte-triggered formation of a sensitizing antenna from a nonsensitizing caged precursor. As the cage can be freely varied, an array of probes for different analytes (Pd(0/2+), H(2)O(2), F(-), β-galactosidase) can be created from the same core structure. The probe design affords nanomolar to micromolar detection limits, provides the capability to detect two analytes in parallel, and can be utilized to monitor enzymatic activity in live cells.  相似文献   
386.
Detection of trace amounts of explosive materials is significantly important for security concerns and pollution control. Four multicomponent metal–organic frameworks ( MOFs‐12 , 13 , 23 , and 123 ) have been synthesized by employing ligands embedded with fluorescent tags. The multicomponent assembly of the ligands was utilized to acquire a diverse electronic behavior of the MOFs and the fluorescent tags were strategically chosen to enhance the electron density in the MOFs. The phase purity of the MOFs was established by PXRD, NMR spectroscopy, and finally by single‐crystal XRD. Single‐crystal structures of the MOFs‐12 and 13 showed the formation of three‐dimensional porous networks with the aromatic tags projecting inwardly into the pores. These electron‐rich MOFs were utilized for detection of explosive nitroaromatic compounds (NACs) through fluorescence quenching with high selectivity and sensitivity. The rate of fluorescence quenching for all the MOFs follows the order of electron deficiency of the NACs. We also showed the detection of picric acid (PA) by luminescent MOFs is not always reliable and can be misleading. This attracts our attention to explore these MOFs for sensing picryl chloride (PC), which is as explosive as picric acid and used widely to prepare more stable explosives like 2,4,6‐trinitroaniline from PA. Moreover, the recyclability and sensitivity studies indicated that these MOFs can be reused several times with parts per billion (ppb) levels of sensitivity towards PC and 2,4,6‐trinitrotoluene (TNT).  相似文献   
387.
Chemical information can be obtained by using atomic force microscopy (AFM) and force spectroscopy (FS) with atomic or molecular resolution, even in liquid media. The aim of this paper is to demonstrate that single molecules of avidin and streptavidin anchored to a biotinylated bilayer can be differentiated by using AFM, even though AFM topographical images of the two proteins are remarkably alike. At physiological pH, the basic glycoprotein avidin is positively charged, whereas streptavidin is a neutral protein. This charge difference can be determined with AFM, which can probe electrostatic double‐layer forces by using FS. The force curves, owing to the electrostatic interaction, show major differences when measured on top of each protein as well as on the lipid substrate. FS data show that the two proteins are negatively charged. Nevertheless, avidin and streptavidin can be clearly distinguished, thus demonstrating the sensitivity of AFM to detect small changes in the charge state of macromolecules.  相似文献   
388.
In addition to the known cilistol A, two new withanolides have been isolated from leaves and stem of Solanum sisymbiifolium, and assigned the structures 1-oxo-5,6; 22,26; 24,25-triepoxy-17,26-dihydroxyergost-2-ene and 1-oxo-22,26; 24,25-diepoxy-5,6,17,26-tetrahydroxy ergost-2-ene, namely cilistepoxide and cilistadiol.  相似文献   
389.
EPR simulation method together with pH-potentiometry combined with UV-Vis spectrophotometry were used for the study of the ternary system 4-fuorosalicylic acid (HA)-N,N-diethylnicotinamide (B)-copper(II) in aqueous solution. The N,N-diethylnicotinamide ligand is a weak donor, its mixed-ligand complexes with 4-fluorosalicylate anions are more favoured. The number of coordinated N,N-diethylnicotinamide molecules increases with decreasing temperature: up to four ones were detected in the coordination sphere of copper(II) in frozen solutions. The formation of [CuH−1AB2] and [CuH−1A] was detected by all methods at neutral pH. At lower pH values, [CuA2B2] and [CuB] become dominant, and this fact is in good agreement with [CuA2B2(H2O)2] crystals obtained from similar solutions. The structural unit of the [CuA2B2(H2O)2] complex consists of a copper(II) ion, which is monodentately coordinated by a pair of 4-fluorosalicylate anions and by a pair of N,N-diethylnicotinamide in trans positions in the basal plane, and by two water molecules in the axial positions of a tetragonal bipyramid.  相似文献   
390.
The occurrence, in a nuclear reactor, of the reaction chain:6Li(n,t)4He;32S(t,n)34mCl has been experimentally established. Experimentation for its application to the activation analysis determination of lithium has been carried out, and a radiochemical method for separation of34mCl is presented. The sensitivity is 0.4 g for the following conditions; 15 min irradiation (thermal flux: 1.5·1013 n·cm–2·s–1); 30 min decay; 2,000 s measurement (semiconductor detector).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号