首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   581篇
  免费   27篇
  国内免费   1篇
化学   497篇
晶体学   2篇
力学   1篇
数学   56篇
物理学   53篇
  2023年   5篇
  2022年   5篇
  2021年   11篇
  2020年   13篇
  2019年   18篇
  2018年   17篇
  2017年   13篇
  2016年   25篇
  2015年   14篇
  2014年   20篇
  2013年   24篇
  2012年   38篇
  2011年   57篇
  2010年   27篇
  2009年   19篇
  2008年   42篇
  2007年   48篇
  2006年   46篇
  2005年   63篇
  2004年   34篇
  2003年   31篇
  2002年   16篇
  2001年   2篇
  2000年   6篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1992年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1972年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有609条查询结果,搜索用时 578 毫秒
121.
Concentrations of labile iron and copper are elevated in patients with neurological disorders, causing interest in metal-neurotransmitter interactions. Catecholamine (dopamine, epinephrine, and norepinephrine) and amino acid (glycine, glutamate, and 4-aminobutyrate) neurotransmitters are antioxidants also known to bind metal ions. To investigate the role of metal binding as an antioxidant mechanism for these neurotransmitters, L-dihydroxyphenylalanine (L-DOPA), and curcumin, their abilities to prevent iron- and copper-mediated DNA damage were quantified, cyclic voltammetry was used to determine the relationship between their redox potentials and DNA damage prevention, and UV-vis studies were conducted to determine iron and copper binding as well as iron oxidation rates. In contrast to amino acid neurotransmitters, catecholamine neurotransmitters, L-DOPA, and curcumin prevent significant iron-mediated DNA damage (IC(50) values of 3.2 to 18 μM) and are electrochemically active. However, glycine and glutamate are more effective at preventing copper-mediated DNA damage (IC(50) values of 35 and 12.9 μM, respectively) than L-DOPA, the only catecholamine to prevent this damage (IC(50) = 73 μM). This metal-mediated DNA damage prevention is directly related to the metal-binding behaviour of these compounds. When bound to iron or copper, the catecholamines, amino acids, and curcumin significantly shift iron oxidation potentials and stabilize Fe(3+) over Fe(2+) and Cu(2+) over Cu(+), a factor that may prevent metal redox cycling in vivo. These results highlight the disparate antioxidant activities of neurotransmitters, drugs, and supplements and highlight the importance of considering metal binding when identifying antioxidants to treat and prevent neurodegenerative disorders.  相似文献   
122.
123.
The known, green, five-coordinate species trans-RuCl(2)(P-N)(PPh(3)) react with R'SH thiols to give yellow cis-RuCl(2)(P-N)(PPh(3))(R'SH) products (P-N = o-diphenylphosphino-N,N'-dimethylaniline; R' = alkyl). The MeSH and EtSH compounds are structurally characterized, with the former being the first reported for a transition metal-MeSH complex, while the thiol complexes with R' = (n)Pr, (i)Pr, (n)Pn (pentyl), (n)Hx (hexyl), and Bn (benzyl) are synthesized in situ. Other trans-RuX(2)(P-N)(PR(3)) complexes (X = Br, I; R = Ph, p-tolyl) are synthesized, and their H(2)S adducts, of a type reported earlier by our group, are also prepared. Thermodynamic data are presented for the reversible formation of the MeSH and EtSH complexes and the H(2)S analogues. The Ru(II)Cl(2)(P-N)(PPh(3)) complex in solution decomposes under O(2) to form [Ru(III)Cl(P-N)](2)(μ-O)(μ-Cl)(2).  相似文献   
124.
Molecular beam scattering experiments and molecular dynamics simulations have been combined to develop an atomic-level understanding of energy transfer, accommodation, and reactions during collisions between gases and model organic surfaces. The work highlighted in this progress report has been motivated by the scientific importance of understanding fundamental interfacial chemical reactions and the relevance of reactions on organic surfaces to many areas of environmental chemistry. The experimental investigations have been accomplished by molecular beam scattering from ω-functionalized self-assembled monolayers (SAMs) on gold. Molecular beams provide a source of reactant molecules with precisely characterized collision energy and flux; SAMs afford control over the order, structure, and chemical nature of the surface. The details of molecular motion that affect energy exchange and scattering have been elucidated through classical-trajectory simulations of the experimental data using potential energy surfaces derived from ab initio calculations. Our investigations began by employing rare-gas scattering to explore how alkanethiol chain length and packing density, terminal group relative mass, orientation, and chemical functionality influence energy transfer and accommodation at organic surfaces. Subsequent studies of small molecule scattering dynamics provided insight into the influence of internal energy, molecular orientation, and gas–surface attractive forces in interfacial energy exchange. Building on the understanding of scattering dynamics in non-reactive systems, our work has recently explored the reaction probabilities and mechanisms for O3 and atomic fluorine in collisions with a variety of functionalized SAM surfaces. Together, this body of work has helped construct a more comprehensive understanding of reaction dynamics at organic surfaces.  相似文献   
125.
Bohle DS  Dodd EL 《Inorganic chemistry》2012,51(8):4411-4413
Gallium(III) protoporphyrin IX forms a dimeric propionate-bridged dimer, 2, that is a soluble diamagnetic analogue of hematin anhydride. The single-crystal structure of 2 corresponds to a nondisordered inversion-symmetric dimer similar to malaria pigment but, unlike it, has a six-coordinate metal and an intraporphyrin rather than an interporphyrin hydrogen bond. NMR NOE correlations demonstrate the presence of the propionate linkage in solutions with pyridine. Taken together, this is the first single-crystal X-ray diffraction study of a propionate-linked dimer as found in malaria pigment and the first evidence for its presence in solution.  相似文献   
126.
Treating deuterohemin, chloro(deuteroporphyrinato)iron(III), with a non-coordinating base in DMSO/methanol allows for the isolation of [(deuteroporphyrinato)iron(III)]2, deuterohematin anhydride (DHA), an analogue of malaria pigment, the natural product of heme detoxification by malaria. The structure of DHA obtained from this solvent system has been solved by X-ray powder diffraction analysis and displays many similarities, yet important structural differences, to malaria pigment. Most notably, a water molecule of solvation occupies a notch created by the propionate side chains and stabilizes a markedly bent propionate ligand coordinated with a long Fe−O bond, and a carboxylate cluster associated with water molecules is generated. Together, these features account for its increased solubility and more open structure, with an increased porphyrin–porphyrin separation. The IR spectroscopic signature associated with this structure also accounts for the strong IR band at 1587 cm−1 seen for many amorphous preparations of synthetic malaria pigment, and it is proposed that stabilizing these structures may be a new objective for antimalarial drugs. The important role of the vinyl substituents in this biochemistry is further demonstrated by the structure of deuterohemin obtained by single-crystal X-ray diffraction analysis.  相似文献   
127.
The addition of Sb−H bonds to alkynes was reported recently as a new hydroelementation reaction that exclusively yields anti-Markovnikov Z-olefins from terminal acetylenes. We examine four possible mechanisms that are consistent with the observed stereochemical and regiochemical outcomes. A comprehensive analysis of solvent, substituent, isotope, additive, and temperature effects on hydrostibination reaction rates definitively refutes three ionic mechanisms involving closed-shell charged intermediates. Instead the data support a fourth pathway featuring open-shell neutral intermediates. Density-functional theory (DFT) calculations are consistent with this model, predicting an activation barrier that is in agreement with the experimental value (Eyring analysis) and a rate limiting step that is congruent with the experimental kinetic isotope effect. We therefore conclude that hydrostibination of arylacetylenes is initiated by the generation of stibinyl radicals, which then participate in a cycle featuring SbII and SbIII intermediates to yield the observed Z-olefins as products. This mechanistic understanding will enable rational evolution of hydrostibination as a synthetic methodology.  相似文献   
128.
Experimental solubilities were measured for 20 crystalline organic solutes dissolved in propanenitrile and for 13 crystalline organic solutes dissolved in butanenitrile at 298.15 K. Infinite dilution activity coefficient data for solutes dissolved in propanenitrile and butanenitrile have been compiled from the published chemical and engineering literature and converted into gas-to-liquid partition coefficients and water-to-organic solvent partition coefficients through standard thermodynamic relationships. Abraham model correlations were developed for describing solute transfer into both propanenitrile and butanenitrile by combining our measured solubility data with the partition coefficients that we calculated from the published activity coefficient data. The derived Abraham model correlations were found to back-calculate the observed partition coefficients and molar solubility data to within 0.14 log units.  相似文献   
129.
In this study a novel glass membrane was prepared for conducting high voltage (HV) to solution in the channel of a microfabricated device for generation of liquid electrospray. Taylor cone formation and mass spectra obtained from this microdevice confirmed the utility of the glass membrane, but voltage conduction through the membrane could not be successfully explained based solely on the conductivity of the glass itself. This novel method for developing a high-voltage interface for microdevices avoids direct metal/liquid contact eliminating bubble formation in the channel due to water hydrolysis on the surface of the metal. Further, this arrangement produces no dead volume as is often found with traditional liquid junctions. At the same time, preliminary investigations into the outlet design of glass microdevices for interfacing with electrospray mass spectrometry, was explored. Both the exit shape and the use of hydrophobic coatings at the channel exit of the microdevice electrospray interface were evaluated using standard proteins with results indicating the utility of this type of design after further optimization.  相似文献   
130.
Frequency-scanned excitation profiles of coherent second harmonic generation (SHG) were measured for silver nanoparticle arrays prepared by nanosphere lithography. The frequency of the fundamental beam did not coincide with the localized surface plasmon resonance (LSPR) of the nanoparticles and was tuned so that the coherent second harmonic (SH) emission was in the region of the LSPR at 720-750 nm. The SH emission from the arrays was compared with a smooth silver film to identify an enhancement of SH emission efficiency that peaks near approximately 650 nm for nanoparticles 50 nm in height. The polarization and orientation dependence of this enhancement suggests that it is related to a dipolar LSPR mode polarized normal to the plane of the substrate. Linear extinction spectra are dominated by in-plane dipoles and do not show this weak out-of-plane LSPR mode. The nanoparticle arrays are truncated tetrahedrons symmetrically oriented by nanosphere lithography to cancel SH from in-plane dipoles which allows observation of the weak out-of-plane component.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号