Hetero-dimeric magnetic nanoparticles of the type Au-Fe3O4 have been synthesised from separately prepared, differently shaped (spheres and cubes), monodisperse nanoparticles. This synthesis was achieved by the following steps: (a) Mono-functionalising each type of nanoparticles with aldehyde functional groups through a solid support approach, where nanoparticle decorated silica nanoparticles were fabricated as an intermediate step; (b) Derivatising the functional faces with complementary functionalities (e.g. amines and carboxylic acids); (c) Dimerising the two types of particles via amide bond formation. The resulting hetero-dimers were characterised by high-resolution TEM, Fourier transform IR spectroscopy and other appropriate methods.
Graphical Abstract Nano-LEGO: Assembling two types of separately prepared nanoparticles into a hetero-dimer is the first step towards complex nano-architectures. This study shows a solid support approach to combine a gold and a magnetite nanocrystal.
In our study, we examined 91 fecal samples from five different groups of people containing HIV patients, hemodialysis patients, kidney transplant recipients, immunocompetent humans without clinical signs, and humans with suspected cryptosporidiosis. The purpose of our study was to determine species and genotype composition of representatives of Cryptosporidium spp. using PCR analysis of small subunit ribosomal RNA gene and 60‐kDa glycoprotein gene and examine their phylogenetic relationship. In HIV‐positive/AIDS‐infected group of patients and in hemodialysis patients, no presence of Cryptosporidium species was detected. In two kidney transplant recipients, we detected species/genotypes Cryptosporidium parvum IIaA13G1T1R1 (KT355488) and Cryptosporidium hominis IaA11G2R8 (KT355489) and in two immunocompetent patients with clinical symptoms, we identified Cryptosporidium muris and C. hominis IbA10G2T1 (KT355490). In the group of healthy immunocompetent individuals without clinical signs, we identified species/genotype C. hominis IbA11G2 (KT355491) in one sample. 相似文献
The DNA structure is an ideal building block for the construction of functional nano-objects. In this direction, metal coordinating base pairs (ligandosides) are an appealing tool for the future specific functionalization of such nano-objects. We present here a study, in which we combine the metal ion coordinating pyrazole ligandoside with the interstrand crosslinking salen ligandoside system. We show that both ligandosides, when combined, are able to create stable multi-copper ion complexing DNA double helix structures in a cooperative fashion. 相似文献