首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7636篇
  免费   310篇
  国内免费   52篇
化学   5707篇
晶体学   72篇
力学   191篇
综合类   1篇
数学   952篇
物理学   1075篇
  2023年   52篇
  2022年   56篇
  2021年   150篇
  2020年   143篇
  2019年   130篇
  2018年   102篇
  2017年   86篇
  2016年   212篇
  2015年   185篇
  2014年   228篇
  2013年   390篇
  2012年   544篇
  2011年   591篇
  2010年   333篇
  2009年   241篇
  2008年   497篇
  2007年   515篇
  2006年   521篇
  2005年   511篇
  2004年   428篇
  2003年   361篇
  2002年   283篇
  2001年   106篇
  2000年   85篇
  1999年   71篇
  1998年   72篇
  1997年   76篇
  1996年   118篇
  1995年   61篇
  1994年   68篇
  1993年   66篇
  1992年   48篇
  1991年   28篇
  1990年   28篇
  1989年   27篇
  1988年   40篇
  1987年   25篇
  1986年   32篇
  1985年   64篇
  1984年   40篇
  1983年   27篇
  1982年   51篇
  1981年   30篇
  1980年   23篇
  1979年   28篇
  1978年   34篇
  1977年   32篇
  1976年   23篇
  1975年   20篇
  1974年   24篇
排序方式: 共有7998条查询结果,搜索用时 62 毫秒
61.
The 1,3-dioxolane-2-phosphenium ion, 1,3-benzodioxole-2-phosphenium ion, and o-biphenylenephosphenium ion are reported to react in a stereoselective manner with cis- and trans-1,2-diaminocyclohexanes in the gas phase in a Fourier transform ion cyclotron resonance mass spectrometer. Elimination of NH3 from an addition product was observed only for the trans isomer. Several reaction mechanisms were experimentally and computationally examined (B3LYP/6-31G(d)//HF/6-31G(d) + ZPVE level of theory). The most plausible mechanism is initiated by addition of one of the amino groups to the electrophilic phosphorus atom followed by proton transfer between the amino groups. A change to a diaxial conformation for the trans isomer facilitates anchimeric assistance by the now nucleophilic phosphorus atom as the C-N bond breaks to release NH3. Intramolecular proton transfer competes with the conformational change and ultimately leads to ethylene glycol elimination. The transition states for the critical steps of these two reactions are calculated to be nearly equal in magnitude, which rationalizes the observation of both reactions for the trans-diamine. In contrast, the adduct of the cis isomer can eliminate NH3 via a concerted 1,2-hydride shift without a need for a conformational change. However, the barrier associated with this reaction was found to be substantially greater than for proton transfer between the N- and O-atoms. The latter reaction dominates and ultimately leads to ethylene glycol elimination.  相似文献   
62.
The perchlorate anion (ClO 4 ) is an anthropogenic contaminant of increasing concern in water supplies, and has been shown to disrupt thyroid activity. Most perchlorate analyses are currently carried out by ion chromatography (IC) with suppressed conductivity detection (SCD). While this procedure has been demonstrated to provide acceptable performance for analysis of water samples, the determination of perchlorate in high-conductivity aqueous extracts of plant or animal material is not readily accomplished by IC-SCD unless lengthy cleanup protocols are applied. With the addition of electrospray ionization mass spectrometry (ESI-MS) to IC, it was hypothesized that the interference imposed by various ionic species could be significantly reduced without the need for purification; however, the analysis of perchlorate in relatively unpurified extracts of biologically derived homogenates by IC-ESI-MS has not previously been described in the literature. The research presented here represents a comparison of the capabilities of IC-SCD and IC-ESI-MS to detect perchlorate in reagent water and in crude extracts of perchlorate-exposed fish (threespine stickleback, Gasterosteus aculeatus). ESI-MS was found to compare favorably to SCD for the detection of perchlorate in deionized water, and to exceed SCD performance in perchlorate analysis of fish-derived extracts.  相似文献   
63.
We have successfully identified stable configurations of both rare-gas and NaCl clusters with a new optimization procedure. An initial cluster configuration is prepared in a so-called shoot-and-stay process. Its total energy is then minimized with respect to the atomic coordinates. To prevent the system from being locked in local minima, the step size of each move is chosen as the width of the energy well at a higher level. As the system evolves, the global minimum is contained in the volume bounded by the decreasing value of step sizes. We have also carried out the optimization of NaCl clusters by the simulated annealing technique, for comparison. The results show that for such heterogeneous systems, the latter method cannot always find the global minimum, because of large energy gaps between different catchment regions in phase space.  相似文献   
64.
Several biaryls bearing various substituents on both rings were synthesized in a preparative fashion, and in yields up to 88% by a technical improvement on the classical Ullmann reaction. All these biaryls bear reactive functional groups (i.e. formyl, methoxycarbonyl, dimethoxycarbonylpropyl and butanolidylmethyl) in both the o and o′ positions. The biaryls 9, 13, 21 and 26–33 are plausible synthons for bisbenzocyclooctadiene lignans such as schizandrin and steganacin.  相似文献   
65.
A method for the complete peptide mapping of the model integral membrane protein bacteri-orhodopsin is demonstrated. Utilizing more effective enzymatic digestion, procedures with capillary liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and tandem mass spectrometry (MS/MS), all predicted tryptic digestion products were detected, as well as peptides from all previously reported post-translational modifications of bacteriorhodopsin. A significant contribution of chymotryptic-like digestion products was also observed. A characterization of the behavior of hydrophobic integral membrane peptides in a reversed-phase liquid chromatographic separation is also provided. The method reported here offers improved compatibility of the solubilizing reagents with both the chromatography and mass spectrometry, rendering it suitable for high-throughput proteomic applications.  相似文献   
66.
Studies of two distinct classes of chromium(III) cage complexes are discussed. The first are compact oxo- and carboxylate cages, made by heating precursors to high temperature under a flow of nitrogen. One of these cages, [Cr12O9(OH)3(O2CCMe3)15], has an S = 6 spin ground state which proves a very interesting subject for study by EPR and MCD spectroscopy. Use of other carboxylates leads to other octa- and dodeca-nuclear complexes. The second class of compounds are homo- and hetero-metallic wheels and chains bridged by fluoride and carboxylates. These include the first heterometallic anti-ferromagnetically coupled ring systems and are being widely studied in areas as diverse as magnetic cooling and quantum information processing. The mechanism by which these unusual cyclic and acyclic structures form is discussed.  相似文献   
67.

A combined chemical and biological process for the recycling of flue gas desulfurization (FGD) gypsum into calcium carbonate and elemental sulfur is demonstrated. In this process, a mixed culture of sulfate-reducing bacteria (SRB) utilizes inexpensive carbon sources, such as sewage digest or synthesis gas, to reduce FGD gypsum to hydrogen sulfide. The sulfide is then oxidized to elemental sulfur via reaction with ferric sulfate, and accumulating calcium ions are precipitated as calcium carbonate using carbon dioxide. Employing anaerobically digested municipal sewage sludge (AD-MSS) medium as a carbon source, SRBs in serum bottles demonstrated an FGD gypsum reduction rate of 8 mg/L/h (109 cells)-1. A chemostat with continuous addition of both AD-MSS media and gypsum exhibited sulfate reduction rates as high as 1.3 kg FGD gypsum/m3d. The increased biocatalyst density afforded by cell immobilization in a columnar reactor allowed a productivity of 152 mg SO4 -2/Lh or 6.6 kg FGD gypsum/m3d. Both reactors demonstrated 100% conversion of sulfate, with 75–100% recovery of elemental sulfur and chemical oxygen demand utilization as high as 70%. Calcium carbonate was recovered from the reactor effluent on precipitation using carbon dioxide. It was demonstrated that SRBs may also use synthesis gas (CO, H2, and CO2 in the reduction of gypsum, further decreasing process costs. The formation of two marketable products—elemental sulfur and calcium carbonate—from FGD gypsum sludge, combined with the use of a low-cost carbon source and further improvements in reactor design, promises to offer an attractive alternative to the landfilling of FGD gypsum.

  相似文献   
68.
Summary The intrinsic reaction-path, reactants, transition state and products for the reaction of NH (3)+H2 (1 g + ) NH2 (2B1)+H (2S) involving the lowest triplet electronic state of NH3 were calculated using multi-configuration (MC) SCF methods. The calculated change of internal energy for the reaction of 11.0 kcal mol–1 agrees with the experimental value within 2 kcal mol–1. The barrier to reaction is 23.4 kcal mol–1 high. The harmonic MCSCF reaction-path potential was calculated and canonical variational transition state theory calculations of the rate constants performed over a temperature range from 400 to 2500 K. The computed rate constants are generally two orders of magnitude smaller than those of the comparable reaction of OH with H2, whereas those of the reverse reaction are by a factor of 20 larger than those of OH2 with H.  相似文献   
69.
The mass spectra of a number of aliphatic nitro compounds have been studied using electron Ionization (EI) and a variety of chemical Ionization (CI) techniques in attempts to obtain relative molecular mass information. The use of positive ion ammonia chemical Ionization techniques gave very satisfactory results, providing abundant [M + NH4]+ ions, not only from both primary and secondary nitro compounds, but also from the much more labile tertiary nitro compounds. However, the use of methane and isobutane positive ion CI or EI conditions resulted in facile fragmentation with little relative molecular mass information being made available. Negative ion CI using methane, isobutane or ammonia as moderating gases all gave abundant [M ? 1]? ions with primary and secondary nitro compounds but at much reduced sensitivity.  相似文献   
70.
Mechanism of UV photoreactivity of alkylsiloxane self-assembled monolayers   总被引:2,自引:0,他引:2  
A molecular level understanding of the photoreactivity of self-assembled monolayers (SAMs) becomes increasingly important as the spatial resolution starts to be limited by the size of the resist and the spatial extent of the photochemical reactions in photoresist micropatterning. To this end, a number of surface characterization techniques were combined to understand the reactive agents, reactive sites, kinetics, and reaction pathways in the UV photoreactivity of octadecylsiloxane (ODS) SAMs. Quantitative analysis of our results provides evidence that ground state atomic oxygen is the primary reactive agent for the UV degradation of ODS SAMs. UV degradation, which follows zero-order kinetics, results in the scission of alkyl chains instead of the siloxane headgroups. Our results suggest that the top of the ODS SAMs is the preferential reactive site. Using a novel, highly surface sensitive technique, fluorescence labeling of surface species, we identified the presence of submonolayer quantities chemical functional groups formed by the UV degradation. These groups are intermediates in a proposed mechanism based on hydrogen abstraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号