首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7838篇
  免费   272篇
  国内免费   52篇
化学   5794篇
晶体学   79篇
力学   193篇
综合类   1篇
数学   980篇
物理学   1115篇
  2023年   55篇
  2022年   81篇
  2021年   154篇
  2020年   144篇
  2019年   126篇
  2018年   105篇
  2017年   86篇
  2016年   213篇
  2015年   193篇
  2014年   231篇
  2013年   385篇
  2012年   546篇
  2011年   592篇
  2010年   337篇
  2009年   253篇
  2008年   506篇
  2007年   523篇
  2006年   525篇
  2005年   519篇
  2004年   438篇
  2003年   356篇
  2002年   286篇
  2001年   111篇
  2000年   88篇
  1999年   81篇
  1998年   71篇
  1997年   80篇
  1996年   122篇
  1995年   65篇
  1994年   69篇
  1993年   66篇
  1992年   49篇
  1991年   32篇
  1990年   27篇
  1989年   29篇
  1988年   43篇
  1987年   28篇
  1986年   33篇
  1985年   68篇
  1984年   41篇
  1983年   30篇
  1982年   51篇
  1981年   28篇
  1980年   22篇
  1979年   28篇
  1978年   37篇
  1977年   29篇
  1976年   24篇
  1975年   22篇
  1974年   25篇
排序方式: 共有8162条查询结果,搜索用时 11 毫秒
951.
Small aluminum oxide cluster cations and anions, produced by laser vaporization, were investigated regarding their reactivity toward CO and N2O employing guided-ion-beam mass spectrometry. Clusters with the same stoichiometry as bulk alumina, Al2O3, exhibited atomic oxygen transfer products when reacted with CO, suggesting the formation of CO2. Anionic clusters were less reactive than cations but showed higher selectivity towards the transfer of only a single oxygen atom. Cationic clusters, in contrast, exhibited additional products corresponding to the sequential transfer of two oxygen atoms and the loss of an aluminum atom. To determine if these stoichiometric clusters could be generated from oxygen-deficient species, clusters having a stoichiometry with one less oxygen atom than bulk alumina, Al2O2, were reacted with N2O. Cationic clusters were found to be selectively oxidized to Al2O3(+), while anionic clusters added both one and two oxygen atoms forming Al2O3(-) and Al2O4(-). The oxygen-rich Al2O4(-) cluster exhibited comparable reactivity to Al2O3(-) when reacted with CO.  相似文献   
952.
This work demonstrates that the desorption/ionization on self-assembled monolayer surface (DIAMS) mass spectrometry, a recent matrix-free laser desorption/ionization (LDI) method based on an organic target plate, is as statistically repeatable and reproducible as matrix assisted laser desorption ionization (MALDI) and thin gold film-assisted laser desorption/ionization (TGFA-LDI) mass spectrometries. On lipophilic DIAMS of target plates with a mixture of glycerides, repeatability/reproducibility has been estimated at 15 and 30% and the relative detection limit has been evaluated at 0.3 and 3 pmol, with and without NaI respectively. Salicylic acid and its d(6)-isomer analysis confirm the applicability of the DIAMS method in the detection of compounds of low molecular weight.  相似文献   
953.
The oncoprotein MDM2 regulates the activity and stability of the tumor suppressor p53 through protein-protein interaction involving their N-terminal domains. The N-terminal lid of MDM2 has been implicated in p53 regulation; however, due to its flexible nature, limited data are available concerning its role in ligand binding. The quantitative dynamics study using NMR reported here shows, for the first time, that the lid in apo-MDM2 slowly interconverts between a "closed" state that is associated with the p53-binding cleft and an "open" state that is highly flexible. Our results reveal that apo-MDM2 predominantly populates the closed state, whereas the p53-bound MDM2 exclusively populates the open state. Unlike p53 binding, the small molecule MDM2 antagonist nutlin-3 binds to the cleft essentially without perturbing the closed lid state. The lid dynamics thereby represents a signature for the experimental and virtual screening of therapeutic antagonists that target the p53-MDM2 interaction.  相似文献   
954.
The surface complex [([triple bond]SiO)Re([triple bond]CtBu)(=CHtBu)(CH2tBu)] (1) is a highly efficient propene metathesis catalyst with high initial activities and a good productivity. However, it undergoes a fast deactivation process with time on stream, which is first order in active sites and ethene. Noteworthy, 1-butene and pentenes, unexpected products in the metathesis of propene, are formed as primary products, in large amount relative to Re (>1 equiv/Re), showing that their formation is not associated with the formation of inactive species. DFT calculations on molecular model systems show that byproduct formation and deactivation start by a beta-H transfer trans to the weak sigma-donor ligand (siloxy) at the metallacyclobutane intermediate having a square-based pyramid geometry. This key step has an energy barrier slightly higher than that calculated for olefin metathesis. After beta-H transfer, the most accessible pathway is the insertion of ethene in the Re-H bond. The resulting pentacoordinated trisperhydrocarbyl complex rearranges via either (1) alpha-H abstraction yielding the unexpected 1-butene byproduct and the regeneration of the catalyst or (2) beta-H abstraction leading to degrafting. These deactivation and byproduct formation pathways are in full agreement with the experimental data.  相似文献   
955.
Synthetic studies are reported that show that the reaction of either H2SnR2 (R = Ph, n-Bu) or HMo(CO)3(Cp) (1-H, Cp = eta(5)-C5H5) with Mo(N[t-Bu]Ar)3 (2, Ar = 3,5-C6H3Me2) produce HMo(N[t-Bu]Ar)3 (2-H). The benzonitrile adduct (PhCN)Mo(N[t-Bu]Ar)3 (2-NCPh) reacts rapidly with H2SnR2 or 1-H to produce the ketimide complex (Ph(H)C=N)Mo(N[t-Bu]Ar)3 (2-NC(H)Ph). The X-ray crystal structures of both 2-H and 2-NC(H)Ph are reported. The enthalpy of reaction of 1-H and 2 in toluene solution has been measured by solution calorimetry (DeltaH = -13.1 +/- 0.7 kcal mol(-1)) and used to estimate the Mo-H bond dissociation enthalpy (BDE) in 2-H as 62 kcal mol(-1). The enthalpy of reaction of 1-H and 2-NCPh in toluene solution was determined calorimetrically as DeltaH = -35.1 +/- 2.1 kcal mol(-1). This value combined with the enthalpy of hydrogenation of [Mo(CO)3(Cp)]2 (1(2)) gives an estimated value of 90 kcal mol(-1) for the BDE of the ketimide C-H of 2-NC(H)Ph. These data led to the prediction that formation of 2-NC(H)Ph via nitrile insertion into 2-H would be exothermic by approximately 36 kcal mol(-1), and this reaction was observed experimentally. Stopped flow kinetic studies of the rapid reaction of 1-H with 2-NCPh yielded DeltaH(double dagger) = 11.9 +/- 0.4 kcal mol(-1), DeltaS(double dagger) = -2.7 +/- 1.2 cal K(-1) mol(-1). Corresponding studies with DMo(CO)3(Cp) (1-D) showed a normal kinetic isotope effect with kH/kD approximately 1.6, DeltaH(double dagger) = 13.1 +/- 0.4 kcal mol(-1) and DeltaS(double dagger) = 1.1 +/- 1.6 cal K(-1) mol(-1). Spectroscopic studies of the much slower reaction of 1-H and 2 yielding 2-H and 1/2 1(2) showed generation of variable amounts of a complex proposed to be (Ar[t-Bu]N)3Mo-Mo(CO)3(Cp) (1-2). Complex 1-2 can also be formed in small equilibrium amounts by direct reaction of excess 2 and 1(2). The presence of 1-2 complicates the kinetic picture; however, in the presence of excess 2, the second-order rate constant for H atom transfer from 1-H has been measured: 0.09 +/- 0.01 M(-1) s(-1) at 1.3 degrees C and 0.26 +/- 0.04 M(-1) s(-1) at 17 degrees C. Study of the rate of reaction of 1-D yielded kH/kD = 1.00 +/- 0.05 consistent with an early transition state in which formation of the adduct (Ar[t-Bu]N)3Mo...HMo(CO)3(Cp) is rate limiting.  相似文献   
956.
957.
Reaction barriers were calculated by using ab initio electronic structure methods for the reductive dechlorination of the polychlorinated ethylenes: C2Cl4, C2HCl3, trans-1,2-C2H2Cl2, cis-1,2-C2H2Cl2, 1,1-C2H2Cl2 and C2H3Cl. Concerted and stepwise cleavages of R-Cl bonds were considered. Stepwise cleavages yielded lower activation barriers than concerted cleavages for the reduction of C2Cl4, C2HCl3, and trans-1,2-C2H2Cl2 for strong reducing agents. However, for typical ranges of reducing strength concerted cleavages were found to be favored. Both gas-phase and aqueous-phase calculations predicted C2Cl4 to have the lowest reaction barrier. Additionally, the reduction of C2HCl3 was predicted to show selectivity toward formation of cis-1,2-C2HCl2* over the formation of trans-1,2-C2HCl2*, and 1,1-C2HCl2* radicals.  相似文献   
958.
We present the results of the first quantum chemical investigations of 1H NMR hyperfine shifts in the blue copper proteins (BCPs): amicyanin, azurin, pseudoazurin, plastocyanin, stellacyanin, and rusticyanin. We find that very large structural models that incorporate extensive hydrogen bond networks, as well as geometry optimization, are required to reproduce the experimental NMR hyperfine shift results, the best theory vs experiment predictions having R2 = 0.94, a slope = 1.01, and a SD = 40.5 ppm (or approximately 4.7% of the overall approximately 860 ppm shift range). We also find interesting correlations between the hyperfine shifts and the bond and ring critical point properties computed using atoms-in-molecules theory, in addition to finding that hyperfine shifts can be well-predicted by using an empirical model, based on the geometry-optimized structures, which in the future should be of use in structure refinement.  相似文献   
959.
The sedimentation behavior of a concentrated suspension of charged liquid drops is analyzed theoretically at arbitrary surface potential and arbitrary double-layer thickness; that is, the effects of double-layer polarization and double-layer overlapping are taken into account. Kuwabara's unit cell model is employed to model the suspension system, and a pseudospectral method based on the Chebyshev polynomial is adopted to solve the governing electrokinetic equations numerically. Several interesting phenomena, which are of significant influence if the internal flow inside a liquid drop is taken into account, are observed. Key factors are examined such as the thickness of the electric double layer, the magnitude of the surface potential, the volume fraction of liquid drops, and the viscosity of the internal fluid. The results presented here add another dimension to the previous studies, which include concentrated suspensions of rigid particles and mercury drops under low zeta potential, with the consideration of the internal flow of liquid drops and double-layer polarization, characterized by its viscosity and the zeta potential respectively. It is found, among other things, that the smaller the viscosity of the internal fluid is, the higher the sedimentation velocity of liquid drops. The higher the zeta potential is, the larger the decrease in sedimentation velocity. In particular, the sedimentation velocity of an inviscid drop (gas bubble) is about three times higher than that of a rigid one. The decrease in sedimentation velocity resulting from the effect of double-layer polarization achieves about 50% if the zeta potential is sufficiently high.  相似文献   
960.
The colloidal behavior of eight synthetic procyanidins (three monomers, four dimers, and a trimer) has been investigated in water or in a winelike medium using DOSY NMR spectroscopy and molecular dynamics simulations. Different behavior was observed for monomers and oligomers. Monomers self-associate with a high affinity constant (37-53 M(-1)) to form micelles at low cmc (critical micelle concentration) values (1-5 g.L(-1)). These micelles undergo a time-dependent coalescence process to form hazes and precipitates. As for dimers and the trimer, self-association also occurs but with a lower affinity (approximately 6 M(-1)) and at higher cmc values (10-20 g.L(-1)) to form small micelles (<5 nm) that remain stable throughout the experiment. The presence of 10% ethanol does not significantly affect the self-association constant for monomers and oligomers but increases their cmc values by approximately 50% and decreases the micelle size by a factor 2. However, the presence of 20 mM NaCl appears to negate the effect of ethanol. This study helps to clarify the role of procyanidin monomers versus oligomers in wine turbidity and demonstrates that procyanidin oligomers are fully available to interact with saliva proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号