首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
化学   20篇
力学   17篇
数学   2篇
物理学   11篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2013年   8篇
  2012年   1篇
  2011年   7篇
  2010年   6篇
  2009年   2篇
  2006年   1篇
  2005年   1篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
41.
Simulations of an n-heptane spray autoigniting under conditions relevant to a diesel engine are performed using two-dimensional, first-order conditional moment closure (CMC) with full treatment of spray terms in the mixture fraction variance and CMC equations. The conditional evaporation term in the CMC equations is closed assuming interphase exchange to occur at the droplet saturation mixture fraction values only. Modeling of the unclosed terms in the mixture fraction variance equation is done accordingly. Comparison with experimental data for a range of ambient oxygen concentrations shows that the ignition delay is overpredicted. The trend of increasing ignition delay with decreasing oxygen concentration, however, is correctly captured. Good agreement is found between the computed and measured flame lift-off height for all conditions investigated. Analysis of source terms in the CMC temperature equation reveals that a convective–reactive balance sets in at the flame base, with spatial diffusion terms being important, but not as important as in lifted jet flames in cold air. Inclusion of droplet terms in the governing equations is found to affect the mixture fraction variance field in the region where evaporation is the strongest, and to slightly increase the ignition delay time due to the cooling associated with the evaporation. Both flame propagation and stabilization mechanisms, however, remain unaffected.  相似文献   
42.
The influence of the turbulence–chemistry interaction (TCI) for n-heptane sprays under diesel engine conditions has been investigated by means of computational fluid dynamics (CFD) simulations. The conditional moment closure approach, which has been previously validated thoroughly for such flows, and the homogeneous reactor (i.e. no turbulent combustion model) approach have been compared, in view of the recent resurgence of the latter approaches for diesel engine CFD. Experimental data available from a constant-volume combustion chamber have been used for model validation purposes for a broad range of conditions including variations in ambient oxygen (8?21% by vol.), ambient temperature (900 and 1000 K) and ambient density (14.8 and 30 kg/m3). The results from both numerical approaches have been compared to the experimental values of ignition delay (ID), flame lift-off length (LOL), and soot volume fraction distributions. TCI was found to have a weak influence on ignition delay for the conditions simulated, attributed to the low values of the scalar dissipation relative to the critical value above which auto-ignition does not occur. In contrast, the flame LOL was considerably affected, in particular at low oxygen concentrations. Quasi-steady soot formation was similar; however, pronounced differences in soot oxidation behaviour are reported. The differences were further emphasised for a case with short injection duration: in such conditions, TCI was found to play a major role concerning the soot oxidation behaviour because of the importance of soot-oxidiser structure in mixture fraction space. Neglecting TCI leads to a strong over-estimation of soot oxidation after the end of injection. The results suggest that for some engines, and for some phenomena, the neglect of turbulent fluctuations may lead to predictions of acceptable engineering accuracy, but that a proper turbulent combustion model is needed for more reliable results.  相似文献   
43.
The oxidative stability of soybean oil added of extracts from by-products generated in the pulp processing of mango (CM), Barbados cherry (CB) and guava (CG), as well as the combination of these extracts with the antioxidants butylated hydroxytoluene (BHT) and tertiary butylhydroquinone (TBHQ), were evaluated by pressurized differential scanning calorimetry (P-DSC) and Rancimat methods. Among the extracts, that obtained from CB showed the highest content of total extractible phenolic. Soybean oil added of CM extract showed greater (p < 0.05) oxidative stability in Rancimat analysis, while by P-DSC method CB was the extract more effective (p < 0.05) to protect soybean oil. Soybean oil added of CB extract showed higher (p < 0.05) OIT values compared to those added of CM, CG and synthetic antioxidants BHT and TBHQ. The combination of CB, CM and CG extracts with TBHQ showed synergistic effects, while CM and CB combined with BHT showed antagonistic effect on oxidative stability in soybean oil. The OIT results obtained from analysis by P-DSC and the OSI results obtained by Rancimat showed Pearson moderate correlation (r = 0.42). These results suggest the CB, CM and CG extracts as good source of antioxidant compounds with potential for combined application with synthetic antioxidants to prevent oxidation in soybean oil.  相似文献   
44.
45.
The recently developed Cubic-Plus-Association Equation of State (CPA EoS) is extended in this study to binary systems containing one associating compound (alcohol) and an inert one (hydrocarbon). CPA combines the Soave-Redlich-Kwong (SRK) equation of state for the physical part with an association term based on perturbation theory. The classical van der Waals one-fluid mixing rules are used for the attractive and co-volume parameters, and b, while the extension of the association term to mixtures is rigorous and does not require any mixing rules. Excellent correlation of Vapor-Liquid Equilibria (VLE) is obtained using a small value for the interaction parameter (kij) in the attractive term of the physical part of the equation of state even when it is temperature-independent. CPA yileds much better results than SRK and its performance is similar to that of other association models, like the Anderko EoS, and the more complex SAFT and Simplified SAFT EoS.  相似文献   
46.
Simulations of a pilot-stabilised flame in a uniformly dispersed ethanol spray are performed using a Doubly Conditional Moment Closure (DCMC) model. The DCMC equation for spray combustion is derived, using the mixture fraction and the reaction progress variable as conditioning variables, including droplet evaporation and differential diffusion terms. A set of closure sub-models is suggested to allow for a first, preliminary application of the DCMC model to the test case presented here. In particular, the DCMC model is used to provide complete closure for the Favre-averaged spray terms in the mean and variance equations of the conditioning variables and the present test case is used to assess the importance of each term. Comparison with experimental data shows a promising overall agreement, whilst differences are related to modelling choices.  相似文献   
47.
Turbulent combustion of mono-disperse droplet-mist has been analysed based on three-dimensional Direct Numerical Simulations (DNS) in canonical configuration under decaying turbulence for a range of different values of droplet equivalence ratio (?d), droplet diameter (ad) and root-mean-square value of turbulent velocity (u). The fuel is supplied in liquid phase and the evaporation of droplets gives rise to gaseous fuel for the flame propagation into the droplet-mist. It has been found that initial droplet diameter, turbulence intensity and droplet equivalence ratio can have significant influences on the volume-integrated burning rate, flame surface area and burning rate per unit area. The droplets are found to evaporate predominantly in the preheat zone, but some droplets penetrate the flame front, reaching the burned gas side where they evaporate and some of the resulting fuel vapour diffuses back towards the flame front. The combustion process in gaseous phase takes place predominantly in fuel-lean mode even for ?d > 1. The probability of finding fuel-lean mixture increases with increasing initial droplet diameter because of slower evaporation of larger droplets and this predominantly fuel-lean mode of combustion exhibits the attributes of low Damköhler number combustion and gives rise to thickening of flame with increasing droplet diameter. The chemical reaction is found to take place under both premixed and non-premixed modes of combustion and the relative contribution of non-premixed combustion to overall heat release increases with increasing droplet size. The statistical behaviours of the flame propagation and mode of combustion have been analysed in detail and detailed physical explanations have been provided for the observed behaviour.  相似文献   
48.
Large-Eddy Simulation (LES), coupled with the Conditional Moment Closure (CMC) sub-grid model and the GRI3 detailed chemical mechanism, are used to explore the structure of the Delft III piloted turbulent non-premixed flame. The use of a quite refined multi-dimensional CMC grid and the detailed chemistry, together with the capability of LES to follow local fluctuations of the scalar dissipation, allow the prediction of localised extinctions and re-ignitions in locations consistent with experiment. The statistics of velocity, mixture fraction, temperature, mass fractions of the major species and of OH are overall in good agreement with experimental data. Carbon monoxide is captured very well, but NO is overpredicted, perhaps due to inherent limitations of the GRI3 scheme to capture NO emissions.  相似文献   
49.
Auto-igniting n-heptane sprays have been studied experimentally in a high pressure, high temperature constant volume combustion chamber with optical access. Ignition delay and the total pressure increase due to combustion are highly repeatable whereas the ignition location shows substantial fluctuations. Simulations have subsequently been performed by means of a first-order fully elliptic Conditional Moment Closure (CMC) code. Overall, the simulations are in good agreement with the experiment in terms of spray evolution, ignition delay and the pressure development. The sensitivity of the predictions with respect to the measured initial conditions, the spray modelling options as well as the chemical mechanism employed have been analysed. Strong sensitivity on the chemical mechanism and to the initial temperature on the predicted ignition delay is reported. The primary atomisation model did not affect strongly the predicted auto-ignition time, but a strong influence was found on the ignition location prediction.  相似文献   
50.
In this paper we consider a Markov decision model introduced by Economou (2003), in which it was proved that the optimal policy in the problem of controlling a compound immigration process through total catastrophes is of control-limit type. We show that the average cost of a control-limit policy is unimodal as a function of the critical point. This result enables us to design very efficient algorithms for the computation of the optimal policy as the bisection procedure and a special-purpose policy iteration algorithm that operates on the class of control-limit policies.AMS 2000 Subject Classification: Primary 9OC40; Secondary 6OJ25  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号