首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   4篇
化学   82篇
晶体学   1篇
力学   6篇
数学   7篇
物理学   34篇
  2020年   3篇
  2019年   3篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   14篇
  2007年   8篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1994年   1篇
  1993年   4篇
  1992年   6篇
  1991年   1篇
  1989年   4篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1973年   6篇
  1972年   2篇
  1971年   2篇
  1966年   1篇
  1957年   1篇
  1929年   1篇
  1899年   1篇
排序方式: 共有130条查询结果,搜索用时 19 毫秒
111.
112.
A series of manganese(II), iron(II) and cobalt(II) bis(triflate) complexes containing linear tetradentate bis(imine) and bis(amine) ligands with a biphenyl bridge have been synthesized. The twist in the ligand backbone due to the biphenyl unit leads in the case of the bis(imine) ligands (1 and 2) containing sp2 hybridised N donors, to a distorted cis-alpha coordination geometry, whereas in the case of the biphenyl- and biphenylether-bridged bis(amine) ligands (7 - 9 and 12), a trans coordination geometry is observed. The catalytic properties of the complexes for the oxidation of cyclohexane, using H2O2 as the oxidant, have been evaluated. Only the iron complexes show any catalytic activity under the conditions used, but the low conversions and selectivies observed indicate that these catalysts lead predominantly to free radical auto-oxidation.  相似文献   
113.
114.
Chaperonins engulf other proteins and accelerate their folding by an unknown mechanism. Here, we combine all-atom molecular dynamics simulations with data from experimental assays of the activity of the bacterial chaperonin GroEL to demonstrate that a chaperonin's ability to facilitate folding is correlated with the affinity of its interior surface for water. Our results suggest a novel view of the behavior of confined water for models of in vivo protein folding scenarios.  相似文献   
115.
Water is known to exhibit a number of peculiar physical properties because of the strong orientational dependence of the intermolecular hydrogen bonding interactions that dominate its liquid state. Recent full-atom simulations of water in a nanolayer between graphite plates submersed in an aqueous medium have raised the possibility of a new addition to this list of peculiarities: they show that application of a strong, uniform electric field normal to and between the plates can cause a pronounced decrease in particle density, rather than the increase expected from electrostriction theory for polarizable fluids [Vaitheeswaran et al., J. Phys. Chem. B 70, 6629 (2005)]. However, in seeming contradiction to this result, another study that simulated a range of similar systems has reported a less surprising electrostrictive increase in particle density upon application of the field [Bratko et al., J. Am. Chem. Soc. 129, 2504 (2007)]. In this work, we attempt to reconcile these conflicting simulation phenomena using a statistical mechanical lattice liquid model of water in an applied field. By solving the model using mean-field theory, we show that a field-induced transition to a markedly lower-density phase such as that observed in recent simulations is possible within a certain parameter regime, but that outside of this regime, the more conventional electrostrictive result should be obtained. Upon modifying the model to treat the case of bulk water under constant pressure in an applied field, we predict a density drop with rising field, and subsequently observe the predicted behavior in our own molecular dynamics simulations of liquid water. Our findings lead us to propose that the model considered here may be useful in a variety of contexts for describing the trade-off between orientational ordering of water molecules and their participation in the liquid phase.  相似文献   
116.
117.
Coherent nondispersive structures are known to play a crucial role in explaining transport in nonautonomous dynamical systems such as ocean flows. These structures are difficult to extract from model output as they are Lagrangian by nature and not revealed by the underlying Eulerian velocity fields. In the last few years heuristic concepts such as finite-time Lyapunov exponents have been used in an attempt to detect barriers to oceanic transport and thus identify regions that trap material such as nutrients and phytoplankton. In this Letter we pursue a novel, more direct approach to uncover coherent regions in the surface ocean using high-resolution model velocity data. Our method is based upon numerically constructing a transfer operator that controls the surface transport of particles over a short period. We apply our technique to the polar latitudes of the Southern Ocean.  相似文献   
118.
High versus low : The high‐yield generation of a synthetic high‐spin oxoiron(IV) complex, [FeIV(O)(TMG3tren)]2+ (see picture, TMG3tren = 1,1,1‐tris{2‐[N2‐(1,1,3,3‐tetramethylguanidino)]ethyl}amine), has been achieved by using the very bulky tetradentate TMG3tren ligand, in order to both sterically protect the oxoiron(IV) moiety and enforce a trigonal bipyramidal geometry at the iron center, for which an S=2 ground state is favored.

  相似文献   

119.
A series of iron(II)-bis(triflate) complexes [Fe(L)(OTf)2] containing linear tetradentate bis(quinolyl)-diamine and bis(quinolylmethyl)-diamine ligands with a range of ligand backbones has been prepared. The coordination geometries of these complexes have been investigated in the solid state by X-ray crystallography and in solution by 1H and 19F NMR spectroscopy. Because of the labile nature of high-spin iron(II) complexes in solution, dynamic equilibria of complexes with different coordination geometries (cis-alpha, cis-beta, and trans) are observed with certain ligand systems. In these cases, the geometry observed in the solid-state does not necessarily represent the only or even the major geometry present in solution. The ligand field strength in the various complexes has been investigated by variable-temperature (VT) magnetic moment measurements and by UV-vis spectroscopy. The strongest ligand field is observed with the most rigid ligand that generates [Fe(L)(OTf)2] complexes with a cis-alpha coordination geometry, and the corresponding [Fe(L)(CH3CN)2]2+ complex displays spin crossover behavior. The catalytic properties of the complexes for the oxidation of cyclohexane have been investigated using hydrogen peroxide as the oxidant. An increased flexibility in the ligand results in a weaker ligand field, which increases the lability of the complexes. The activity and selectivity of the catalysts appear to be related to the strength of the ligand field and the stability of the catalyst.  相似文献   
120.
A new and remarkably facile sp3-C-O bond forming reaction of beta-hydroxyalkyl Rh porphyrins to form epoxides has been discovered and its mechanism investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号