首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   786篇
  免费   32篇
  国内免费   2篇
化学   693篇
晶体学   6篇
力学   4篇
数学   60篇
物理学   57篇
  2024年   2篇
  2023年   10篇
  2022年   21篇
  2021年   22篇
  2020年   18篇
  2019年   23篇
  2018年   19篇
  2017年   14篇
  2016年   23篇
  2015年   29篇
  2014年   31篇
  2013年   46篇
  2012年   52篇
  2011年   74篇
  2010年   37篇
  2009年   28篇
  2008年   45篇
  2007年   52篇
  2006年   51篇
  2005年   36篇
  2004年   46篇
  2003年   29篇
  2002年   25篇
  2001年   8篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1989年   3篇
  1983年   2篇
  1981年   4篇
  1980年   3篇
  1977年   1篇
  1976年   5篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1969年   1篇
  1947年   1篇
  1940年   2篇
  1937年   1篇
  1928年   1篇
  1926年   3篇
  1895年   1篇
排序方式: 共有820条查询结果,搜索用时 15 毫秒
21.
An ultra-high-pressure liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method for the determination of 37 pesticides (herbicides, insecticides and fungicides) in environmental and wastewater has been developed. To efficiently combine UHPLC with MS/MS, a fast-acquisition triple quadrupole mass analyzer was used. This analyzer (minimum dwell time, 5 ms) allows acquiring up to three simultaneous transitions in the selected reaction monitoring mode for each compound assuring a reliable identification without resolution or sensitivity losses. A pre-concentration step based on solid-phase extraction using Waters Oasis HLB cartridges (0.2 g) was applied with a 100-fold pre-concentration factor along the whole analytical procedure. The method was validated based on European SANCO guidelines using surface, ground, drinking and treated water (from an urban solid residues treatment plant) spiked at two concentration levels (0.025 and 0.1 μg/L), the lowest having been established as the limit of quantification objective. The method showed excellent sensitivity, with instrumental limits of detection ranging from 0.1 to 7 pg. It was applied to environmental water samples (ground and surface water) as well as to samples of urban solid waste leachates (raw leachate and treated leachate after applying reversed osmosis) collected from a municipal treatment plant. Matrix effects have been studied in the different types of water samples analyzed, and several isotope-labelled internal standards have been evaluated as a way to compensate the signal suppression observed for most of the compounds studied, especially in wastewater samples. As a general remark, only those pesticides which response was corrected using their own isotope-labelled molecule, could be satisfactorily corrected in all type of samples, assuring in this way the accurate quantification in all matrix samples.  相似文献   
22.
The authors have studied the use of the self-organizing map (SOM) in the analysis of lipid conformations produced by atomic-scale molecular dynamics simulations. First, focusing on the methodological aspects, they have systematically studied how the SOM can be employed in the analysis of lipid conformations in a controlled and reliable fashion. For this purpose, they have used a previously reported 50 ns atomistic molecular dynamics simulation of a 1-palmitoyl-2-linoeayl-sn-glycero-3-phosphatidylcholine (PLPC) lipid bilayer and analyzed separately the conformations of the headgroup and the glycerol regions, as well as the diunsaturated fatty acid chain. They have elucidated the effect of training parameters on the quality of the results, as well as the effect of the size of the SOM. It turns out that the main conformational states of each region in the molecule are easily distinguished together with a variety of other typical structural features. As a second topic, the authors applied the SOM to the PLPC data to demonstrate how it can be used in the analysis that goes beyond the standard methods commonly used to study the structure and dynamics of lipid membranes. Overall, the results suggest that the SOM method provides a relatively simple and robust tool for quickly gaining a qualitative understanding of the most important features of the conformations of the system, without a priori knowledge. It seems plausible that the insight given by the SOM could be applied to a variety of biomolecular systems and the design of coarse-grained models for these systems.  相似文献   
23.
The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 < r (?) < 3 region via the difference method has enabled all the nearest neighbour correlations to be deconvolved. The diffraction data provides the first direct experimental evidence of split Na-O nearest-neighbour correlations in these melt quench bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. (23)Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design.  相似文献   
24.
Inductively coupled plasma mass spectrometry (ICP-MS) techniques are widely used for determination of long-lived radionuclides and their isotopic ratios in the nuclear fields. Uranium (U) and Plutonium (Pu) isotopes have been determined by many researchers with ICP-MS due to its relatively high sensitivity and short measurement time. In this work, an inter-laboratory comparison exercise among the Nordic countries was performed, focusing on the measurement of U and Pu isotopes in certified reference materials by ICP-MS. The performance and characters of different ICP-MS instruments are evaluated and discussed in this paper.  相似文献   
25.
Journal of Radioanalytical and Nuclear Chemistry - This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear...  相似文献   
26.
Highly functionalized pyrroles with appropriate regiochemical functionality represent an important class of marine natural products and potential drug candidates. We describe herein a detailed study of the reaction of α-aminoacid esters with vinylogous amides and also β-halovinylaldehydes for the regiospecific synthesis of 2,3,4-trisubstituted and 1,2,3,4-tetrasubstituted pyrroles. Since the vinylogous amides and β-halovinylaldehydes are readily available precursors, rapid access to a wide variety of unsymmetrically substituted pyrroles is accomplished via this methodology.  相似文献   
27.
A combination of genomic and metabolomic approaches recently resulted in the identification of a nonribosomal tetrapeptide tambromycin, which possesses promising antiproliferative activity and several unusual structural features, including a densely substituted indole, a methyloxazoline ring, and an unusual pyrrolidine‐containing amino acid called tambroline. In this work, we identify a concise synthetic route to access tambromycin, which relies on the strategic use of biocatalytic and chemocatalytic C?H functionalization methods to prepare two key precursors to the natural product in an efficient and scalable manner. The success of our study highlights the benefits of applying the principles of biocatalytic retrosynthesis as well as C?H functionalization logic to the synthesis of complex molecular scaffolds.  相似文献   
28.
The absolute configuration of the neoclerodane glycoside amarisolide, presented here as the monohydrate, C26H36O9·H2O, has been determined by association with the known configuration of the glucose moiety. Its structure was established as 2β‐(O‐β‐d ‐gluco­pyran­osyl)­neocleroda‐3,13(16),14‐trien‐15,16‐epoxy‐18,19‐olide. Extensive hydrogen bonding among the hydroxyl groups of the sugar moiety forms layers which are interconnected by water mol­ecules.  相似文献   
29.
Purposes of these studies were to synthesize Zn(II) and Co(II) complexes of 3-nitro-4-hydroxybenzoic acid, determine their structures through X-ray crystallography, and obtain their anticonvulsant activities. Thermogravimetric, differential scanning calorimetry, impedance of aqueous solutions and magnetic properties analyses were also determined. Anticonvulsant and related activities of these complexes as well as Zn(II), Co(II), Ni(II) and Mg(II) (5-nitrosalicylato) complexes were determined by the National Institutes of Health, Antiepileptic Development Program. Results of these analyses are presented to document unique bonding features and physical properties of these compounds and their anticonvulsant activities. It is concluded that these compounds have chemical and physical properties that can be used to account for their anticonvulsant activities.  相似文献   
30.
In the science and engineering communities, the nanoscience revolution is intensifying. As many types of nanomaterials are becoming more reliably synthesized, they are being used for novel applications in all branches of nanoscience and nanotechnology. Since it is sometimes desirable for single nanomaterials to perform multiple functions simultaneously, multicomponent nanomaterials, such as core-shell, alloyed, and striped nanoparticles, are being more extensively researched. Nanoscientists hope to design multicomponent nanostructures and exploit their inherent multiple functionalities for use in many novel applications. This review highlights recent advances in the synthesis of multisegmented one-dimensional nanorods and nanowires with metal, semiconductor, polymer, molecular, and even gapped components. It also discusses the applications of these multicomponent nanomaterials in magnetism, self-assembly, electronics, biology, catalysis, and optics. Particular emphasis is placed on the new materials and devices achievable using these multicomponent, rather than single-component, nanowire structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号