首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   17篇
  国内免费   1篇
化学   309篇
晶体学   2篇
力学   3篇
数学   34篇
物理学   30篇
  2023年   10篇
  2022年   14篇
  2021年   13篇
  2020年   15篇
  2019年   8篇
  2018年   1篇
  2017年   7篇
  2016年   18篇
  2015年   17篇
  2014年   16篇
  2013年   20篇
  2012年   39篇
  2011年   33篇
  2010年   23篇
  2009年   17篇
  2008年   30篇
  2007年   21篇
  2006年   16篇
  2005年   25篇
  2004年   10篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1982年   2篇
  1981年   1篇
  1979年   3篇
  1974年   1篇
  1973年   1篇
  1962年   1篇
排序方式: 共有378条查询结果,搜索用时 0 毫秒
51.
Centrifugal partition chromatography (CPC) coupled online with high-performance liquid chromatography (HPLC) with diode-array detection (DAD) and mass spectrometry (MS) is presented in this work. This strategy offers the possibility to obtain simultaneously CPC fractionation of natural extracts, the HPLC fingerprint of separated fractions and structural information on molecules contained in each fraction. This new approach was applied to the fractionation and purification of xanthones from Garcinia mangostana (Clusiaceae) pericarp. A biphasic solvent system of heptane/ethyl acetate/methanol/water (2:1:2:1, v/v) was used for the CPC separation of 175?mg crude ethanolic extract. The HPLC analysis was conducted with a reversed-phase monolithic column allowing fast and repeatable separation. This combined CPC-HPLC-DAD-MS method led to isolation of 33?mg α-mangostin and 6?mg γ-mangostin at 98?% and 98.5?% purity, respectively, in 140?min. Furthermore, in the same time a total of 16 other xanthones were detected in the extract, and ten of them were identified on the basis of their UV and MS spectra.  相似文献   
52.
Understanding bacterial adhesion on a surface is a crucial step to design new materials with improved properties or to control biofilm formation and eradication. Sum Frequency Generation (SFG) vibrational spectroscopy has been employed to study in situ the conformational response of a self-assembled monolayer (SAM) of octadecanethiol (ODT) on a gold film to the adhesion of hydrophilic and hydrophobic ovococcoid model bacteria. The present work highlights vibrational SFG spectroscopy as a powerful and unique non-invasive biophysical technique to probe and control bacteria interaction with ordered surfaces. Indeed, the SFG vibrational spectral changes reveal different ODT SAM conformations in air and upon exposure to aqueous solution or bacterial adhesion. Furthermore, this effect depends on the bacterial cell surface properties. The SFG spectral modeling demonstrates that hydrophobic bacteria flatten the ODT SAM alkyl chain terminal part, whereas the hydrophilic ones raise this ODT SAM terminal part. Microorganism-induced alteration of grafted chains can thus affect the desired interfacial functionality, a result that should be considered for the design of new reactive materials.  相似文献   
53.
This contribution presents a new strategy for preparing nanocapsules with a shell made of a supramolecular polymer which repeating units are held together by reversible interactions rather than covalent bonds. These nanocapsules were prepared in classical miniemulsion through interfacial addition reaction of a diisocyanate (IPDI) and a monoamine (iBA), forming low‐molecular weight bis‐ureas moieties which are strong self‐complementary interacting molecules through hydrogen‐bonding. The nanocapsules present a diameter around 100 nm, and MALDI‐TOF MS and 1H NMR analyses confirm the expected molecular characteristics for the shell. This strategy opens the scope of a new type of nanomaterials exhibiting stimuli‐responsiveness due to the reversible interaction linking the repeating units.

  相似文献   

54.
Through the sol–gel route, we have well-controlled the preparation of fluorescent organic nanocrystals grown in silicate thin films. This process is based on the confined nucleation and growth of dyes in the pores of wet gels. The resulting nanocomposite sol–gel thin films, coated onto low-cost substrates, exhibit coupled properties: transparency, stability, easy shaping of sol–gel thin films and high fluorescence intensity coming from organic nanocrystals. The sensitivity of the fluorescence intensity of nanocrystals to their environments can be exploited for the development of optical sensors. Indeed, Förster Resonance Energy Transfer can inhibit nanocrystal fluorescence when probe molecules are adsorbed or grafted on the nanocrystal surface after their diffusion through the pores of the sol–gel matrix. We investigated by time-resolved fluorescence spectroscopy the effect of nanocrystal size and probe concentration on the fluorescence quenching in presence of Methylene Blue used in this study as molecular probe. As strong fluorescence quenchings can be achieved, even for low probe concentrations, these hybrid organic–inorganic nanocoposites are promising for the development of sensor devices by increasing their fluorescence contrasts under specific chemical or biological environments.  相似文献   
55.
Herein, we report on the structure and dynamics of the aqueous Ca2+ system studied by using ab initio molecular dynamics (AIMD) simulations. Our detailed study revealed the formation of well‐formed hydration shells with characteristics that were significantly different to those of bulk water. To facilitate a robust comparison with state‐of‐the‐art X‐ray absorption fine structure (XAFS) data, we employ a 1st principles MD‐XAFS procedure and directly compare simulated and experimental XAFS spectra. A comparison of the data for the aqueous Ca2+ system with those of the recently reported Zn2+, Fe3+, and Al3+ species showed that many of their structural characteristics correlated well with charge density on the cation. Some very important exceptions were found, which indicated a strong sensitivity of the solvent structure towards the cation′s valence electronic structure. Average dipole moments for the 2nd shell of all cations were suppressed relative to bulk water.  相似文献   
56.
57.
Two triphenylamine derivatives bearing terminal perfluorophenyl groups have been synthesized. Their HOMO, LUMO levels and electronic band gap have been evaluated by spectroscopic and electrochemical measurements and rationalized with theoretical calculations. X-ray structure analysis of crystals allowed the observation of multiple intermolecular interactions due to the presence of the perfluorophenyl pendant groups. The multiplication of these interactions explains the differences between calculated (in gas phase) and observed (in solid states) structures.  相似文献   
58.
The hole transporting medium in solid-state dye-sensitized solar cells can be utilized to harvest sunlight. Herein we demonstrate that a triphenylamine-based dye, used as hole-transporting medium, contributes to the photocurrent in a squaraine-sensitized solid-state dye-sensitized solar cell. Steady-state photoluminescence measurements have been used to distinguish between electron transfer and energy transfer processes leading to energy conversion upon light absorption in the hole-transporting dye.  相似文献   
59.
The reactivity of a series of Zn(Cys)(4) zinc finger model peptides towards H(2)O(2) and O(2) has been investigated. The oxidation products were identified by HPLC and ESI-MS analysis. At pH<7.5, the zinc complexes and the free peptides are oxidised to bis-disulfide-containing peptides. Above pH 7.5, the oxidation of the zinc complexes by H(2)O(2) also yields sulfinate- and sulfonate-containing overoxidised peptides. At pH 7.0, monitoring of the reactions between the zinc complexes and H(2)O(2) by HPLC revealed the sequential formation of two disulfides. Several techniques for the determination of the rate constant for the first oxidation step corresponding to the attack of H(2)O(2) by the Zn(Cys)(4) site have been compared. This rate constant can be reliably determined by monitoring the oxidation by HPLC, fluorescence, circular dichroism or absorption spectroscopy in the presence of excess ethyleneglycol bis(2-aminoethyl ether)tetraacetic acid. In contrast, monitoring of the release of zinc with 4-(2-pyridylazo)resorcinol or of the thiol content with 5,5'-dithiobis(2-nitrobenzoate) did not yield reliable values of this rate constant for the case in which the formation of the second disulfide is slower than the formation of the first. The kinetic measurements clearly evidence a protective effect of zinc on the oxidation of the cysteines by both H(2)O(2) and O(2), which points to the fact that zinc binding diminishes the nucleophilicity of the thiolates. In addition, the reaction between the zinc finger and H(2)O(2) is too slow to consider zinc fingers as potential sensors for H(2)O(2) in cells.  相似文献   
60.
Water in mesoporous materials possessing a two-dimensional hexagonal structure has been studied by the variation of its NMR longitudinal relaxation time T(1) as a function of the static magnetic field value, or equivalently of the NMR measurement frequency. This technique, dubbed relaxometry, has been applied from 5 kHz (measurement frequency) up to 400 MHz with various instruments including a variable-field spectrometer operating between 8 and 90 MHz. Moreover, the range 0-5 kHz could be investigated by transverse relaxation, T(2) denoting the corresponding relaxation time, and relaxation in the rotating frame, T(1ρ) denoting the corresponding relaxation time. Measurements of proton relaxation rates (inverse of relaxation times) have been performed with H(2)O and HOD (residual protons of heavy water) at water volumes of 80%, 60%, and 40% relative to the porous volume. Comparison between H(2)O and HOD shows clearly that, above 1 MHz where both sets of data are superposed, relaxation is purely intermolecular and due to paramagnetic relaxation (dipolar interactions of water protons with unpaired electrons of paramagnetic entities). Below 1 MHz, it is possible to subtract the intermolecular contribution (given by HOD data) from H(2)O data so that one is left with intramolecular relaxation which is solely due to water reorientational motions. The analysis of these low-frequency data (in terms of Lorentzian functions) reveals two types of water within the pores: one interacting strongly with the surface and the other corresponding to a second layer. High-frequency data, which arise from paramagnetic relaxation, exhibit again two types of water. Due to their correlation times, one type is assigned to relatively free water within the pores while the other type corresponds to bulk (interparticular) water. Their proportions, given as a function of the volume fraction, are consistent with the above assignments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号