首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   9篇
  国内免费   2篇
化学   161篇
晶体学   2篇
力学   7篇
数学   19篇
物理学   50篇
  2023年   9篇
  2022年   1篇
  2021年   8篇
  2020年   6篇
  2019年   9篇
  2018年   1篇
  2017年   3篇
  2016年   11篇
  2015年   7篇
  2014年   9篇
  2013年   14篇
  2012年   27篇
  2011年   26篇
  2010年   7篇
  2009年   10篇
  2008年   14篇
  2007年   21篇
  2006年   15篇
  2005年   16篇
  2004年   17篇
  2003年   4篇
  1990年   1篇
  1987年   2篇
  1980年   1篇
排序方式: 共有239条查询结果,搜索用时 15 毫秒
231.
Novel possibilities for studying matter under extreme conditions are opened by the forthcoming availability of free electron laser (FEL) facilities generating subpicosecond photon pulses of high intensity in the VUV and X-ray range, which are able to heat thin samples up to the warm dense matter (WDM) regime. Pump-and-probe ultrafast techniques can be used to study the dynamics of phase transitions and characterize the states under extreme and metastable conditions. Ultrafast (10-100 fs) bulk heating is seen as a novel route for accessing extremely high temperature regimes as well as the transition region between low-density and high density fluids, that is presently considered a no man's land in simple liquids and glasses. Here we briefly describe the present status of the TIMEX end-station devoted to those experimental activities at the Fermi@Elettra FEL facility, and some preliminary results obtained in a pilot ultrafast experiment using a laser source as a pump and a supercontinuum probe aimed to characterize the melting process of Silicon.  相似文献   
232.
Near-infrared (NIR) spectroscopy has been employed to investigate the evolution of the vibrational spectrum of water entrapped in a tricalcium silicate paste. The overall free water, which decreases as a function of time due to the formation of the hydrated phases (portlandite, Ca(OH)(2), and hydrated calcium silicate, C-S-H) during the hydration reaction, is quantified by the decrease in the area of the NIR band at about 5000 cm(-1). The coexistence of two types of water in the hydrated phases (a "surface-interacting water" (type I) and a "bulklike water" (type II)) during the hydration is obtained by the analysis of the band at about 7000 cm(-1). The deconvolution of this band allows the quantification of the two water types. As the reaction advances, part of the "bulklike water" is converted to "surface-interacting water" in direct agreement with the C-S-H surface development. Finally, the Ca(OH)(2) formation can be concurrently monitored by NIR through the increase of a very sharp peak at 7083 cm(-1). Near-infrared spectroscopy allows determination in a very simple way of the most important features of the tricalcium silicate setting process.  相似文献   
233.
Chemical analysis of the secondary metabolite pattern of the sacoglossan mollusc Elysia cf. expansa, collected along South Indian coasts, showed the presence of the typical Caulerpa-derived sesquiterpene caulerpenyne (1) and two new minor co- occurring metabolites, the compounds dihydrocaulerpenyne (4) and expansinol (5). The chemical characterization of these molecules, structurally related to 1, is reported.  相似文献   
234.
Recent combined experiments by small angle neutron scattering (SANS) and neutron spin echo (NSE) have demonstrated that dynamic clusters can form in concentrated lysozyme solutions when the right combination of a short-ranged attraction and a long-ranged electrostatic repulsion exists. In this paper, we investigate the temperature effect on the dynamic cluster formation and try to pinpoint the transition concentration from a monomeric protein phase to a cluster phase. Interestingly, even at a relatively high concentration (10% mass fraction), despite the significant change in the SANS patterns that are associated with the change of the short-ranged attraction among proteins, the normalized short-time self-diffusion coefficient is not affected between 5 and 40?°C. This is interpreted as a lack of cluster formation in this condition. However, at larger concentrations such as 17.5% and 22.5% mass fraction, we show that the average hydrodynamic radius increases significantly and causes a large decrease of the normalized self-diffusion coefficient as a result of cluster formation when the temperature is changed from 25 to 5?°C.  相似文献   
235.
In this work, we present results of Time-Differential γ–γ Perturbed-Angular-Correlations (PAC) experiments performed in 111Cd-doped ZnO semiconductor. The PAC technique has been applied in order to characterize the electric-field-gradient (EFG) tensor at (111In (EC)→) 111Cd nuclei located, as was later demonstrated, at defect-free cation sites of the ZnO host structure. The PAC experiments were performed in the temperature range of 77–1075 K. At first glance, the unexpected presence of low-intensity dynamic hyperfine interactions was observed, which were analyzed with a perturbation factor based on the Bäverstam and Othaz model. The experimental EFG results were compared with ab initio calculations performed with the Full-Potential Augmented Plane Wave plus local orbital (FP-APW+lo) method, in the framework of the Density Functional Theory (DFT), using the Wien2K code. The presence of the dynamic hyperfine interactions has been analyzed enlightened by the FP-APW+lo calculations of the EFG performed as a function of the charge state of the cell. We could correlate the large strength of the dynamic hyperfine interaction with the strong variation of the EFG due to changes in the electronic charge distribution in the Cd vicinity during the time-window of the PAC measurement. It was also revealed that the Cd impurity decays to a final stable neutral charge state (Cd2+) fast enough (in few ns) to produce the nearly undamped observed PAC spectra.  相似文献   
236.
In the food industry, it is frequently necessary to check the quality of an ingredient to decide whether to use it in production and/or to have an idea of the final possible contamination of the finished product. The current need to quickly separate and identify relevant contaminants within different classes, often with legal residue limits on the order of 1-100?μg?kg(-1) , has led to the need for more effective analytical methods. With thousands of organic compounds present in complex food matrices, the development of new analytical solutions leaned towards simplified extraction/clean-up procedures and chromatography coupled with mass spectrometry. Efforts must also be made regarding the instrumental phase to overcome sensitivity/selectivity limits and interferences. For this purpose, high-resolution full scan analysis in mass spectrometry is an interesting alternative to the traditional tandem mass approach. A fast method for extracting and purifying bakery matrices was therefore developed and combined with the exploitation of ultra-high-pressure liquid chromatography (UHPLC) coupled to a Orbitrap Exactive? high-resolution mass spectrometer (HRMS). Extracts of blank, naturally contaminated and fortified minicakes, prepared through a combined use of industrial and pilot plant production lines, were analyzed at different concentration levels (1-100?μg?kg(-1) ) of various contaminants: a limit of detection at 10?μg?kg(-1) was possible for most of the analytes within all the categories analyzed, including pesticides, aflatoxins, trichothecene toxins and veterinary drugs. The application of accurate mass targeted screening described in this article demonstrates that current single-stage HRMS analytical instrumentation is well equipped to meet the challenges posed by chemical contaminants in the screening of both bakery raw materials and finished products. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   
237.
Photoelectrochemical (PEC) water splitting is a promising approach for renewable solar light conversion. However, surface Fermi level pinning (FLP), caused by surface trap states, severely restricts the PEC activities. Theoretical calculations indicate subsurface oxygen vacancy (sub-Ov) could release the FLP and retain the active structure. A series of metal oxide semiconductors with sub-Ov were prepared through precisely regulated spin-coating and calcination. Etching X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and electron energy loss spectra (EELS) demonstrated Ov located at sub ∼2–5 nm region. Mott–Schottky and open circuit photovoltage results confirmed the surface trap states elimination and Fermi level de-pinning. Thus, superior PEC performances of 5.1, 3.4, and 2.1 mA cm−2 at 1.23 V vs. RHE were achieved on BiVO4, Bi2O3, TiO2 with outstanding stability for 72 h, outperforming most reported works under the identical conditions.  相似文献   
238.
Tetrafluoromethane (CF4), the simplest perfluorocarbon (PFC), has the potential to exacerbate global warming. Catalytic hydrolysis is a viable method to degrade CF4, but fluorine poisoning severely restricts both the catalytic performance and catalyst lifetime. In this study, Ga is introduced to effectively assists the defluorination of poisoned Al active sites, leading to highly efficient CF4 decomposition at 600 °C with a catalytic lifetime exceeding 1,000 hours. 27Al and 71Ga magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) showed that the introduced Ga exists as tetracoordinated Ga sites (GaIV), which readily dissociate water to form Ga−OH. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density function theory (DFT) calculations confirmed that Ga−OH assists the defluorination of poisoned Al active sites via a dehydration-like process. As a result, the Ga/Al2O3 catalyst achieved 100 % CF4 decomposition keeping an ultra-long catalytic lifetime and outperforming reported results. This work proposes a new approach for efficient and long-term CF4 decomposition by promoting the regeneration of active sites.  相似文献   
239.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号