首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   21篇
  国内免费   1篇
化学   460篇
晶体学   1篇
数学   48篇
物理学   57篇
  2023年   6篇
  2022年   17篇
  2021年   26篇
  2020年   10篇
  2019年   20篇
  2018年   10篇
  2017年   9篇
  2016年   26篇
  2015年   19篇
  2014年   19篇
  2013年   33篇
  2012年   27篇
  2011年   25篇
  2010年   23篇
  2009年   21篇
  2008年   37篇
  2007年   26篇
  2006年   27篇
  2005年   33篇
  2004年   22篇
  2003年   31篇
  2002年   15篇
  2001年   10篇
  2000年   7篇
  1999年   3篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   7篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1943年   2篇
排序方式: 共有566条查询结果,搜索用时 15 毫秒
61.
The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed.  相似文献   
62.
This paper deals with a systematic density functional theory (DFT) study aiming to unravel the mechanism of the thyroxine (T4) conversion into 3,3′,5‐triiodothyronine (rT3) by using different bio‐inspired naphthyl‐based models, which are able to reproduce the catalytic functions of the type‐3 deiodinase ID‐3. Such naphthalenes, having two selenols, two thiols, and a selenol–thiol pair in peri positions, which were previously synthesized and tested in their deiodinase activity, are able to remove iodine selectively from the inner ring of T4 to produce rT3. Calculations were performed including also an imidazole ring that, mimicking the role of the His residue, plays an essential role deprotonating the selenol/thiol moiety. For all the used complexes, the calculated potential energy surfaces show that the reaction proceeds via an intermediate, characterized by the presence of a X?I?C (X=Se, S) halogen bond, whose transformation into a subsequent intermediate in which the C?I bond is definitively cleaved and the incipient X?I bond is formed represents the rate‐determining step of the whole process. The calculated trend in the barrier heights of the corresponding transition states allows us to rationalize the experimentally observed superior deiodinase activity of the naphthyl‐based compound with two selenol groups. The role of the peri interactions between chalcogen atoms appears to be less prominent in determining the deiodination activity.  相似文献   
63.
Michael addition reactions of aldehyde to β-nitrostyrene catalyzed by L-proline were investigated by using controlled, monomode microwave-assisted technique in a closed vessel system. Ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim]NTf2) was used as the reaction medium to replace the commonly used volatile organic solvents and as a good absorbing solvent during Michael reaction under the influence of microwave irradiation. The Michael product is clean and generates good yields in short reaction times with moderate results on enantioselectivity (ee). In this work, optimization of proline-catalyzed Michael reaction was carried out using response surface methodology (RSM) based on a three-factor-three-level central composite design (CCD). Various reaction parameters including catalyst loading (5–30 mol%), reaction time (5–40 min), and substrate (2–5 equivalent ratio) were investigated. A high Michael yield (96.5%) with 36.9 ee% was obtained at the optimum conditions of 10.0 mol% catalyst loading, 5.0 min reaction time, and 2.0 substrate equivalent ratio.

[Supplementary materials are available for this article. Go to the publisher's online edition of Synthetic Communications® for the following free supplemental resource(s): Full experimental and spectral details.]  相似文献   

64.
65.
The reaction of S-nitrosocaptopril (NOcap) formation was studied in both aqueous acid and basic medium. Captopril (cap) reacts rapidly with nitrous acid in strong acid medium to give the stable--in the timescale of the experiments--NOcap. The kinetic study of the reaction involving the use of stopped-flow, shows that at low sodium nitrite (nit) concentration, the reaction is first-order in both [nit], [H(+)], and is strongly catalysed by Cl(-) or Br(-) (= X(-)): rate = (k(3) + k(4)[X(-)])[H(+)][nit][cap]. In aqueous buffered solution of acetic acid-acetate the reaction rate is much slower and the decomposition of NOcap was observed; however, the rate of NOcap decay is more than 30-fold slower than its formation. In aqueous basic medium of carbonate-hydrogen carbonate buffer, as well as in alkaline medium, the kinetics of the nitroso group (NO) transfer from tert-butyl nitrite (tBN) to cap was studied using either conventional or stopped flow methods. In mild basic medium, the NOcap decomposes. The NOcap formation is first-order in both tBN and cap concentrations, and the reaction rate increases with pH until to, approximately, pH 11.5, above which value it becomes pH independent or even invariable with the [OH(-)]. Kinetic results show that the thiolate ion of cap is the reactive species. In fact, the presence of anionic micelles of sodium dodecyl sulfate (SDS) inhibits the reaction due to the separation of the reagents; whereas, cationic micelles of tetradecyltrimethylammonium bromide (TTABr) catalyse the reaction at low surfactant concentration due to reagents concentration in the small volume of the micelle. The rate equation is: rate = k(f) K(SH)[cap][tBN]/(K(SH) + [H(+)]). The rate of NOcap decomposition in mild basic medium is first-order in both [cap] and [NOcap], and decreases on increasing pH; but, in alkaline medium the NOcap is stable within the timescale of the experiments. Based on the results, the NOcap decomposition yields the disulfide compound that is formed in the nucleophilic attack of the -SH group of cap to the sulfur electrophilic center of NOcap, -S-N=O. The resulting rate equation is: rate = k(d)[H(+)][cap][NOcap]/(K(SH) + [H(+)]).  相似文献   
66.
We investigated the chemisorption of self-assembled monolayers of sulfur-functionalized 4-amino-7-nitrobenzofurazan on gold and silver nanoisland films (NIFs) by means of surface-enhanced fluorescence (SEF) and surface-enhanced Raman scattering (SERS). The ligand is a push–pull molecule, where an intramolecular charge transfer occurs between an electron-donor and an electron-acceptor group, thus exhibiting nonlinear optical properties that are related to both SERS and SEF effects. The presence of different heteroatoms in the molecule ensures the possibility of chemical interaction with both silver and gold substrates. The SERS spectra suggest that furazan is bound to silver via lone pairs of the nitrogen atoms, whereas the ligand is linked to gold via a sulfur atom. Silver NIFs provide more efficient enhancement of both fluorescence and Raman scattering in comparison with gold NIFs. The present SEF and SERS investigation could provide useful information for foreseeing changes in the nonlinear responses of this push–pull molecule.  相似文献   
67.
The Al and In-diclofenac compounds were prepared. Thermogravimetry (TG) and X-ray diffraction powder patterns were used to characterize these compounds. Details concerning the dehydration and thermal decomposition as well as data of kinetic parameters have been described here. The kinetic studies of these stages were evaluated from several heating rates with mass sample of 2 and 5 mg in open crucibles under nitrogen atmosphere. The results of the present study improve the knowledge on these compounds including their dehydration and thermal stability. The obtained data leads to a dependence on the sample mass, which results in two kinetic behavior patterns.  相似文献   
68.
The essential oils of Hypericum perforatum, H. perfoliatum and H. hircinum, growing in Southern Italy, were analyzed by GC and GC/MS. In the three oils, 111 compounds in all were identified: 53 for the oil of H. hircinum (93.7% of the total oil), 55 for H. perforatum (96.5% of the total oil) and 63 for H. perfoliatum (98.7% of the total oil). The major fraction of the essential oils of H. perforatum and H. hircinum was represented by sesquiterpene hydrocarbons, while the monoterpene alpha-pinene, and the phenol thymol were the most abundant compounds in the essential oil of H. perfoliatum. The oils were evaluated for their potential in vitro phytotoxic activity against germination and early radicle elongation of Raphanus sativus and Lepidium sativum. The germination of this latter was significantly inhibited by the essential oil of H. hircinum, at the highest doses tested, whereas radicle elongation of garden cress was significantly inhibited by the essential oils of H. perfoliatum and H. hircinum. The radicle elongation of radish was inhibited by the essential oil of H. hircinum to a major extent and by H. perforatum and perfoliatum in a minor measure.  相似文献   
69.
This paper addresses the problem of determining the best scheduling for Bus Drivers, a $\mathcal{NP}$ -hard problem consisting of finding the minimum number of drivers to cover a set of Pieces-Of-Work (POWs) subject to a variety of rules and regulations that must be enforced such as spreadover and working time. This problem is known in literature as Crew Scheduling Problem and, in particular in public transportation, it is designated as Bus Driver Scheduling Problem. We propose a new mathematical formulation of a Bus Driver Scheduling Problem under special constraints imposed by Italian transportation rules. Unfortunately, this model can only be usefully applied to small or medium size problem instances. For large instances, a Greedy Randomized Adaptive Search Procedure (GRASP) is proposed. Results are reported for a set of real-word problems and comparison is made with an exact method. Moreover, we report a comparison of the computational results obtained with our GRASP procedure with the results obtained by Huisman et al. (Transp. Sci. 39(4):491?C502, 2005).  相似文献   
70.
The phase diagram for electron-hole droplets is obtained using a phenomenological spin one lattice gas model treated in mean field approximation. Very good agreement with experimental data can be obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号