首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   12篇
  国内免费   5篇
化学   283篇
力学   3篇
数学   11篇
物理学   34篇
  2024年   3篇
  2023年   4篇
  2022年   26篇
  2021年   26篇
  2020年   29篇
  2019年   19篇
  2018年   11篇
  2017年   10篇
  2016年   14篇
  2015年   11篇
  2014年   17篇
  2013年   38篇
  2012年   11篇
  2011年   11篇
  2010年   14篇
  2009年   11篇
  2008年   8篇
  2007年   3篇
  2006年   8篇
  2005年   4篇
  2004年   14篇
  2003年   5篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   6篇
  1996年   2篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1981年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有331条查询结果,搜索用时 203 毫秒
241.
The kinetics of oxidation of (ethylenediaminediacetato)-chromium(III), [Cr(EDDA)(OH2)2]+, by N-bromosuccinimide (NBS) in aqueous solution to yield CrVI have been studied spectrophotometrically over the 20–40°C range. The reaction rate is first order with respect to both [NBS] and [CrIII], and increases with pH over the range 4.8–5.8. The activation parameters were calculated. A mechanism in which deprotonated [CrIII(EDDA)(OH2)(OH)] is the reactive species is suggested. The electron transfer may proceed via an inner sphere mechanism through bridging of the two reactants by the hydroxo ligand.  相似文献   
242.
The dielectric investigations of porous synthetic silica gel modified with polyaniline (PANI) and polyethylene glycol (PEG) polyblend at various concentrations are demonstrated in this paper. By using the chemical oxidative process to embed polyaniline (PANI) and polyethylene glycol (PEG) into a silica matrix, conducting gel nanocomposites were synthesized. For various dopant concentrations, the dielectric permittivity (ε′), D.C. conductivity (σdc), loss tangent (tanδ) and dielectric loss (ε″) were investigated. The samples were characterized using differential thermal analysis/thermogravimetric analysis, Fourier transform infrared spectroscopy and high-resolution transmission electron microscopy. Depending on the co-blend content, PANI-PEG modified silica structures produce nanoparticles ranging in size from 9.9 to 48.1 nm. The variation of DC conductivity (σdc) with PANI/PEG content shows Maxwell-Wagner Sillars (MWS) effect confirming the role of the conjugation and the structural order.  相似文献   
243.
The fabrication of colorless and see-through dye-sensitized solar cells (DSCs) requires the photosensitizers to have little or no absorption in the visible light region of the solar spectrum. However, a trade-off between transparency and power conversion efficiency (PCE) has to be tackled, since most transparent DSCs are showing low PCE when compared to colorful and opaque DSCs. One strategy to increase PCE is applying two cosensitizers with selective conversion of the UV and NIR radiation, therefore, the non-visible part only is absorbed. In this study, we report synthesis of novel five UV-selective absorbers, based on diimide and Schiff bases incorporating carboxyl and pyridyl anchoring groups. A systematic computational investigation using density functional theory (DFT) and time-dependent DFT approaches was employed to evaluate their prospect of application in transparent DSCs. Experimental UV/Vis absorption spectra showed that all dyes exhibit an absorption band covering the mid/near-UV region of solar spectrum, with a bathochromic shift and a hyperchromic shifts for Py-1 dye. Computational results showed that the studied dyes satisfied the basic photophysical and energetics requirements of operating DSC as well as the stability and thermodynamical spontaneity of adsorption onto surface of TiO2. However, results revealed outperformance of the thienothiophene core-containing Py-1 UV-dye, owing to its advantageous structural attributes, improved conjugation, intense emission, large Stokes shift and maximum charge transferred to the anchor. Chemical compatibility of Py-1 dye was then theoretically investigated as a potential cosensitizer of a reference VG20-C2 NIR-dye. By the judicious selection of pyridyl anchor-based UV-absorber (Py-1) and carboxyl anchor-based NIR-absorber (VG20), the advantage of the optical complementarity and selectivity of different TiO2-adsorption-site (Lewis- and Bronsted-acidic) can be achieved. An improved overall PCE is estimated accordingly.  相似文献   
244.
The development of the field of nanotechnology has revolutionized various aspects in the fields of modern sciences. Nano-medicine is one of the primary fields for the application of nanotechnology techniques. The current study sheds light on the reno-protective impacts of gold nano-particles; nanogold (AuNPs) against 5-flurouracil (5-FU)-induced renal toxicity. Indeed, the use of 5-FU has been associated with kidney injury which greatly curbs its therapeutic application. In the current study, 5-FU injection was associated with a significant escalation in the indices of renal injury, i.e., creatinine and urea. Alongside this, histopathological and ultra-histopathological changes confirmed the onset of renal injury. Both gene and/or protein expression of nuclear factor erythroid 2–related factor 2 (Nrf-2) and downstream antioxidant enzymes revealed consistent paralleled anomalies. AuNPs administration induced a significant renal protection on functional, biochemical, and structural levels. Renal expression of the major sensor of the cellular oxidative status Nrf-2 escalated with a paralleled reduction in the renal expression of the other contributor to this axis, known as Kelch-like ECH-associated protein 1 (Keap-1). On the level of the effector downstream targets, heme oxygenase 1 (HO-1) and gamma-glutamylcysteine synthetase (γ-GCS) AuNPs significantly restored their gene and protein expression. Additionally, combination of AuNPs with 5-FU showed better cytotoxic effect on MCF-7 cells compared to monotreatments. Thus, it can be inferred that AuNPs conferred reno-protective impact against 5-FU with an evident modulatory impact on Nrf-2/Keap-1 and its downstream effectors, HO-1 and γ-GCS, suggesting its potential use in 5-FU regimens to improve its therapeutic outcomes and minimize its underlying nephrotoxicity.  相似文献   
245.
Jellyfish venom is a rich source of bioactive proteins and peptides with various biological activities including antioxidant, antimicrobial and antitumor effects. However, the anti-proliferative activity of the crude extract of Rhopilema nomadica jellyfish venom has not been examined yet. The present study aimed at the investigation of the in vitro effect of R. nomadica venom on liver cancer cells (HepG2), breast cancer cells (MDA-MB231), human normal fibroblast (HFB4), and human normal lung cells (WI-38) proliferation by using MTT assay. The apoptotic cell death in HepG2 cells was investigated using Annexin V-FITC/PI double staining-based flow cytometry analysis, western blot analysis, and DNA fragmentation assays. R. nomadica venom displayed significant dose-dependent cytotoxicity on HepG2 cells after 48 h of treatment with IC50 value of 50 μg/mL and higher toxicity (3:5-fold change) against MDA-MB231, HFB4, and WI-38 cells. R. nomadica venom showed a prominent increase of apoptosis as revealed by cell cycle arrest at G2/M phase, upregulation of p53, BAX, and caspase-3 proteins, and the down-regulation of anti-apoptotic Bcl-2 protein and DNA fragmentation. These findings suggest that R. nomadica venom induces apoptosis in hepatocellular carcinoma cells. To the best of the authors’ knowledge, this is the first scientific evidence demonstrating the induction of apoptosis and cell cycle arrest of R. nomadica jellyfish venom.  相似文献   
246.
This letter presents an extension of EPL116(2017)62001 to light- and strange-quark nonequilibrium chemical phase-space occupancy factors (γq,s). The resulting damped trigonometric functionalities relating γq,s to the nucleon-nucleon center-of-mass energies (\(\sqrt {{s_{NN}}} \)) looks very similar except different coefficients. The phenomenology of the resulting γq,s(\(\sqrt {{s_{NN}}} \)) describes a rapid decrease at \(\sqrt {{s_{NN}}} \) ? 7GeV followed by a faster increase up to ~20 GeV. Then, both γq,s become nonsensitive to \(\sqrt {{s_{NN}}} \). Although these differ from γ s (\(\sqrt {{s_{NN}}} \))obtained at γ q (\(\sqrt {{s_{NN}}} \))=1, various particle ratios including K++, K??, Λ/π?, Λ?/π?, Ξ++, and Ω/π?, can well be reproduced, as well. We conclude that γq,s(\(\sqrt {{s_{NN}}} \)) should be instead determined from fits of various particle yields and ratios but not merely from fits to the particle ratio K++.  相似文献   
247.
1,4-Bis(p-tolylamino)-6,7-dichloroanthraquinone 1 when reacted with di(sodiothio)-maleonitrile 2 afforded heterocyclic thianone compound, 5,12-dioxo-5,12-dihydroanthro[2,3-b][1,4]dithiine-2,3-dicarbonitrile 3. Using lithium/pentanol and acetic acid, the dicarbonitrile product 3 was cyclotetramerized, yielding the matching tetra 5,12-dioxo-5,12-dihydroanthro[2,3-b][1,4]dithiine-porphyrazine dye compound (2H-Pz) 4a. The dicarbonitrile molecule was a ring-shaped metallic product utilizing metallic salt and quinoline, yielding the corresponding tetra 5,12-dioxo-5,12-dihydroanthro[2,3-b][1,4]dithiine-porphyrazinato-metal II dyes (M-Pz), M = Zn, Co, or Ni 4b–d. The produced compounds’ elemental analysis investigation, Infrared, and nuclear magnetic resonance spectrum information accord with the structures attributed to them. The cyclotetramerization and complexation reactions are ensured by the molecular weight and metal load of the produced products. The inclusion of electron-donating groups resulted in a lower optical band gap of the produced dye sensitizers, with “push–pull” promotion of about 1.55 eV. The prepared substituted porphyrazines reveal high absorption in the UV–VIS region, which could be of potential value as a building block for novel electronic and optical materials as well as a sensor for technology. This is considered for improving solar cell absorption. The absorption bands of the synthesized porphyrazine dyes extend beyond 800 nm, so these dyes could be useful in various optoelectronic applications.  相似文献   
248.
Phytoplasmas are economically important plant pathogenic bacterial diseases, causing severe yield losses worldwide. In this study, we tested nanoformulations such as glycyrrhizic acid ammonium salt (GAS), salicylic acid (SA), and boric acid (BA) as novel antimicrobial agents inducing the resistance against the phytoplasma disease in faba bean. The nanoparticles (NP) were foliar-applied to naturally phytoplasma-infected faba bean with three concentrations from each of SA, GAS, and BA, under field conditions. Nested PCR (using universal primer pairs P1/P7 and R16F2n/R16R2) were reacted positively with all symptomatic samples and gave a product size of approximately 1200 bp, while the healthy plant gave no results. Transmission electron microscopy examinations of phytoplasma-infected faba bean plants treated with different nanoparticles revealed that severe damage occurred in phytoplasma particle’s structure, degradation, malformation, lysis in the cell membrane, and the cytoplasmic leakage followed by complete lysis of phytoplasma cells. Exogenous application of GAS-NP (1.68 µM), SA-NP (0.28 µM), and BA-NP (0.124 µM) suppressed the infection percentage of phytoplasma by 75%, 50%, and 20%, and the disease severity by 84%, 64%, and 54%, respectively. Foliar application of nanoparticles improved Fv/Fm (maximum quantum efficiency of PSII Photochemistry), PI (the performance index), SPAD chlorophyll (the relative chlorophyll content), shoots height, and leaves number, thus inducing recovery of the plant biomass and green pods yield. The most effective treatment was GAS-NP at 1.68 µM that mediated substantial increases in the shoots’ fresh weight, shoots’ dry weight, number of pods per plant, and green pods yield by 230%, 244%, 202% and 178%, respectively, compared to those of infected plants not sprayed with nanoparticles. This study demonstrated the utility of using nanoparticles, particularly GAS-NP at 1.68 µM to suppress the phytoplasma infection.  相似文献   
249.
A group of novel trimethoxyphenyl (TMP)-based analogues were synthesized by varying the azalactone ring of 2-(3,4-dimethoxyphenyl)-4-(3,4,5-trimethoxybenzylidene)oxazolone 1 and characterized using NMR spectral data as well as elemental microanalyses. All synthesized compounds were screened for their cytotoxic activity utilizing the hepatocellular carcinoma (HepG2) cell line. Compounds 9, 10 and 11 exhibited good cytotoxic potency with IC50 values ranging from 1.38 to 3.21 μM compared to podophyllotoxin (podo) as a reference compound. In addition, compounds 9, 10 and 11 exhibited potent inhibition of β-tubulin polymerization. DNA flow cytometry analysis of compound 9 shows cell cycle disturbance at the G2/M phase and a significant increase in Annexin-V-positive cells compared with the untreated control. Compound 9 was further studied regarding its apoptotic potential in HepG2 cells; it decreased the level of MMP and Bcl-2 as well as boosted the level of p53 and Bax compared with the control HepG2 cells.  相似文献   
250.
Molecular Diversity - Coronavirus diseases 2019 (COVID-19) are seriously affecting human health all over the world. Nucleotide inhibitors have promising results in terms of its efficacy against...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号