首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77654篇
  免费   319篇
  国内免费   374篇
化学   23912篇
晶体学   789篇
力学   6719篇
数学   31928篇
物理学   14999篇
  2018年   10431篇
  2017年   10257篇
  2016年   6051篇
  2015年   835篇
  2014年   280篇
  2013年   295篇
  2012年   3751篇
  2011年   10470篇
  2010年   5613篇
  2009年   6026篇
  2008年   6570篇
  2007年   8732篇
  2006年   202篇
  2005年   1282篇
  2004年   1509篇
  2003年   1954篇
  2002年   998篇
  2001年   239篇
  2000年   284篇
  1999年   150篇
  1998年   188篇
  1997年   142篇
  1996年   194篇
  1995年   114篇
  1994年   75篇
  1993年   92篇
  1992年   52篇
  1991年   62篇
  1990年   49篇
  1989年   58篇
  1988年   58篇
  1987年   57篇
  1986年   57篇
  1985年   46篇
  1984年   42篇
  1983年   36篇
  1982年   42篇
  1981年   38篇
  1980年   46篇
  1979年   44篇
  1978年   34篇
  1973年   25篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1910年   24篇
  1909年   41篇
  1908年   40篇
  1907年   32篇
  1904年   28篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
231.
We have calculated the effects of the intense laser field on the total optical absorption coefficient (the linear and third-order nonlinear) for transition between two lower-lying electronic levels in the asymmetric parabolic \({\text{GaAs/ Ga}}_{{ 1 {\text{ - x}}}} {\text{Al}}_{\text{x}} {\text{As}}\) quantum well. Total absorption coefficient (linear and nonlinear absorption coefficient) for the transitions between any two electronic states was calculated by using density matrix formalism and the perturbation expansion method. Our results show that the effects of intense laser field and the well dimensions on the optical transitions are more pronounced. If well center is changed to be \({\text{L}}_{\text{c}} < 0 \, ({\text{L}}_{\text{c}} > 0)\), effective well width decreases (increases) and thus we can obtain the red or blue shift in the peak position of the absorption coefficient by changing the intensities of the non-resonant intense laser field as well as dimensions of the well.  相似文献   
232.
FSO or free space optics is a familiar name used in a wide array of applications in the area of telecommunications. Due to its features of low maintenance cost and deployment time, most of the applications consider FSO as the alternative solution for appropriately replacing fiber optics. In this work, we have designed 100 Gbps FSO system by combining mode division multiplexing (MDM) and optical code multiple access scheme (OCDMA). Ten channels, each carrying 10 Gbps data, are transported over 8 km FSO link by using MDM of two Laguerre Gaussian modes and random diagonal codes. Moreover, the performance of proposed MDM–OCDMA–FSO system is also investigated under atmospheric turbulences.  相似文献   
233.
A different silicon photonic wire waveguide is proposed, which uses multiple thin cladding layers in order to reduce the index contrast between core and cladding interface. The reduced index contrast in the proposed waveguide has led to reduction in the scattering losses by 37% as compared to silicon wire waveguide for 400 nm × 220 nm waveguide dimension. The proposed waveguide has shown significant reduction in bending losses. It offers the bending loss of 0.0118 dB at the radius of 1 μm and 0.0063 dB for a radius of 2 μm at 1.55 μm wavelength as compared to 0.086 and 0.013 dB at the radius of 1 and 2 μm, respectively, offered by silicon photonic wire waveguide at 1.5 μm wavelength. The use of polymer material as top cladding layer resulted in decreasing the sensitivity of effective index against temperature for the designed waveguide by a factor of 2 as compared to silicon wire waveguide.  相似文献   
234.
Self-cleaning and anti-bacterial activities of the photo-catalyst titanium dioxide make it a superior compound for use in the ceramics and glass industry. In order to achieve high self-cleaning efficiency for building products, it is important that Titania is present as anatase phase. Moreover, it is desirable that the particle sizes are in Nano-range, so that a large enough surface area is available for enhanced catalytic performance. In the present paper, Cobalt and Nickel co-doped (4%mol Ni and 4%mol Co doped TiO2) and un-doped TiO2 Nano powders have been prepared by sol–gel technique. They were calcined at the temperatures in the range of 475–1075 °C. Ni/Co co-doped TiO2 postponed the anatase to rutile transformation of TiO2 by about 200–300°C, such that before calcination at 775°C, no rutile was detected for 4 mol% Ni/Co co-doped TiO2. A systematic decreasing on crystallite size and increasing on specific surface area of Ni/Co co-doped TiO2 were observed. Photo-catalytic activity of anatase polymorph was measured by the decomposition rate of methylene blue under visible light. The results showed enhanced catalysis under visible light for Ni/Co co-doped TiO2 as compared to pure TiO2. The enhanced performance was attributed to surface chemistry change associated with a slight shift in the band gap. Depending on the temperatures ranging from 475 to 1075 °C, band gap energy of Ni and Co doped TiO2 crystals decreased. For all samples there is a general reduction of the band gap energy from 3.00 to 2.96 eV.  相似文献   
235.
Tellurite glasses (TeO2–ZnO–Nb2O5) mono-doped Er3+ and co-doped Er3+/Ce3+ have been prepared using the melt-quenching technique. To evaluate the effect of Ce3+ on the structural, thermal stability of glass hosts and fluorescence properties of Er3+, X-ray diffraction patterns, Ftir spectra, differential scanning calorimeter curves, absorption spectra, fluorescence emission spectra, fluorescence lifetimes, up-conversion emission spectra of glass samples were measured and investigated. Using Judd–Ofelt theory, we calculated intensity parameters (Ω2, Ω4 and Ω6), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors and the quantum yield of luminescence for 4I13/2 → 4I15/2 transition. The co-doping with Ce3+ was effective on the suppression of up-conversion emission of Er3+ owing to the phonon-assisted energy transfer: Er3+:4I11/2 + Ce3+:2F5/2 → Er3+:4I13/2 + Ce3+:2F7/2 which contributed the effective enhancement of 1.53 µm fluorescence emission. The change in optical properties with the addition of Ce3+ ions have been discussed and compared with other glasses. Using the Mc Cumber method for the 4I13/2 → 4I15/2 transition, absorption cross-section, calculated emission cross-section, and gain cross-section values support that TZNEr1Ce1 glass is a potential material for developing broad-band and high-gain erbium-doped fiber amplifiers applied for 1.53 µm.  相似文献   
236.
AsxTe100?x chalcogenide films (where x = 30–80 at.%) were synthesized via direct interaction of arsenic and tellurium vapors into low-temperature non-equilibrium RF (40 MHz) plasma discharge at reduced pressure. Phase and structural evolution of AsxTe100?x films were implemented by gradual changing of the ratio of the initial substances in the gas phase. The dependence of the films structure, surface morphology and optical properties on phase and chemical content has been studied.  相似文献   
237.
238.
A compact planar antenna sources with on-chip fabrication and high directivity in order to achieve large depth-of-field for better image resolution is the prospective demand for THz imaging application. Therefore, the small-gap photoconductive dipole antennas have been explored to fulfil such applications demand. However, there are certain modalities for improving the photoconductive dipole antenna performance which need to identify to accomplish high THz average radiated power and improved total efficiency. The unit-cell small-gap photoconductive dipole antenna radiation power enhancement methods need to optimize the design parameters with photoconductive material selection from theoretical simulation. Further, the potential improvement of coupling efficiency of THz wave with air as well as femto-second laser incident efficiency is also important parameters to enhance the radiation power of small-gap photoconductive dipole antenna. In this paper, we have presented an analytical procedure employing explicit mathematical expression leading to the physical behaviour of small-gap photoconductive dipole antenna. The effects of biased lines on the antenna performance parameters are discussed with the help of proposed equivalent circuit model. We have explored the effect of gap-size on the THz radiated power and on total radiation efficiency from the proposed photoconductive dipole antennas.  相似文献   
239.
An equivalent circuit model of uni-traveling carrier photodiode (UTC-PD) is developed from integral carrier density rate equation and few important properties of the device such as the electrical and optical characteristics are evaluated by employing advanced device physics. Circuit model incorporates chip and package parasitic of the device quite simply to provide practical behaviour of UTC-PD. We have developed small signal ac circuit model which is useful for the analysis of low power modulation characteristics of the device and dc circuit model which is advantageous to find wavelength dependent responsivity fairly accurately. At high optical input power the device bandwidth is found to be increased through enhancement of self-induced field in the absorption region and high output power can be derived from the device when absorption width is large. Such condition calls for large signal analysis. We have developed large signal circuit model by combining few mathematical transformations with small signal circuit model with different circuit element values. Our large signal model is unique that the same circuit can be used for both small and large signal analysis. With large signal model the optical power induced bandwidth improvement and output photocurrent saturation are explained. Large signal model is validated through linearity and IP3 analysis which found close agreement with the measured results.  相似文献   
240.
The minority carrier continuity equation has been solved with the Green’s function approach in a N/P photodiode under the low-level injection assumption. The analytical solution obtained with this approach depends on the three spatial coordinates and on time. The diffusion and the collection of the excess minority carriers have been studied during the transitional period corresponding to very short integration times. The internal Quantum Efficiency and the diffusion Modulation Transfer Function have been calculated according to time. The simulations showed that they evolve with time until their steady-state values. When the integration time is very short, this evolution has to be taken into account for the estimation of the sensitivity of a photodiode and the contrast on an image of a sensor based on several adjacent N/P-type photodiodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号