首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1194篇
  免费   23篇
  国内免费   5篇
化学   609篇
晶体学   5篇
力学   19篇
数学   132篇
物理学   457篇
  2020年   9篇
  2019年   11篇
  2018年   12篇
  2016年   31篇
  2015年   16篇
  2014年   20篇
  2013年   50篇
  2012年   44篇
  2011年   57篇
  2010年   24篇
  2009年   33篇
  2008年   68篇
  2007年   54篇
  2006年   35篇
  2005年   32篇
  2004年   38篇
  2003年   31篇
  2002年   33篇
  2001年   29篇
  2000年   30篇
  1999年   13篇
  1998年   15篇
  1997年   10篇
  1996年   17篇
  1995年   24篇
  1994年   10篇
  1993年   21篇
  1992年   23篇
  1991年   10篇
  1990年   12篇
  1989年   22篇
  1988年   11篇
  1987年   8篇
  1985年   19篇
  1984年   24篇
  1983年   18篇
  1982年   19篇
  1981年   21篇
  1980年   16篇
  1979年   24篇
  1978年   19篇
  1977年   20篇
  1976年   23篇
  1975年   18篇
  1974年   20篇
  1973年   14篇
  1972年   12篇
  1971年   12篇
  1970年   10篇
  1969年   9篇
排序方式: 共有1222条查询结果,搜索用时 0 毫秒
991.
The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such as agglomeration can also hinder their potential use. By creating nanostructured particles one can take optimum benefit from the desired properties while minimizing the adverse effects. We aim at developing high-precision routes for scalable production of nanostructured particles. Two gas-phase synthesis routes are explored. The first one - covering nanoparticles with a continuous layer - is carried out using atomic layer deposition in a fluidized bed. Through fluidization, the full surface area of the nanoparticles becomes available. With this process, particles can be coated with an ultra-thin film of constant and well-tunable thickness. For the second route - attaching nanoparticles to larger particles - a novel approach using electrostatic forces is demonstrated. The micron-sized particles are charged with one polarity using tribocharging. Using electrospraying, a spray of charged nanoparticles with opposite polarity is generated. Their charge prevents agglomeration, while it enhances efficient deposition at the surface of the host particle. While the proposed processes offer good potential for scale-up, further work is needed to realize large-scale processes.  相似文献   
992.
993.
The possible benefits of the addition of an anionic surfactant, didodecyldimethylammonium bromide, in the determination of arsenic, by flow injection hydride generation atomic absorption spectrometry using a flame-heated quartz tube atomizer, were studied in the light of previous reports concerning the effects of surfactants on chemical vapor generation procedures. Concentrations of arsenic between 5 and 30 μg l−1 were used. Calibrations in the presence and absence of the surfactant in the sample solution were not significantly different, either for the case where vesicles were formed in the presence of the analyte or where they were preformed in the surfactant solution and then added to the analyte. The surfactant had no effect on recoveries in the presence of copper, nickel or bismuth. The addition of the surfactant to the acid carrier and/or borohydride streams had no effect. It is proposed that there may be a greater role for surfactants in the improvement of the processes by which the hydride is transferred to the bulk gas phase than has been attributed in previous reports on this subject.  相似文献   
994.
995.
996.
997.
Utilizing organisms as sources of fluorophores relieves the demand for petroleum feedstock in organic synthesis of fluorescent products, and endophytic fungi provide a promising vein for natural fluorescent products. We report the characterization of a pH-responsive fluorophore from an endophytic fungus isolated from sand pine. The endogenous fluorescence of the live organism was measured using fluorescence microscopy. Computational interpretation of the spectra was accomplished with time-dependent density functional theory methods. The combined use of experimental and theoretically predicted spectra revealed the pH equilibria and photoexcited tautomerization of the natural product, 5-methylmellein. This product shows promise both as a stand-alone pH-indicating fluorophore, with alkaline pKa, and as "green" feedstock for synthesis of custom fluorophores.  相似文献   
998.
999.
The lipid composition of the human lens is distinct from most other tissues in that it is high in dihydrosphingomyelin and the most abundant glycerophospholipids in the lens are unusual 1-O-alkyl-ether linked phosphatidylethanolamines and phosphatidylserines. In this study, desorption electrospray ionization (DESI) mass spectrometry-imaging was used to determine the distribution of these lipids in the human lens along with other lipids including, ceramides, ceramide-1-phosphates, and lyso 1-O-alkyl ethers. To achieve this, 25 μm lens slices were mounted onto glass slides and analyzed using a linear ion-trap mass spectrometer equipped with a custom-built, 2-D automated DESI source. In contrast to other tissues that have been previously analyzed by DESI, the presence of a strong acid in the spray solvent was required to desorb lipids directly from lens tissue. Distinctive distributions were observed for [M + H]+ ions arising from each lipid class. Of particular interest were ionized 1-O-alkyl phosphatidylethanolamines and phosphatidylserines, PE (18:1e/18:1), and PS (18:1e/18:1), which were found in a thin ring in the outermost region of the lens. This distribution was confirmed by quantitative analysis of lenses that were sectioned into four distinct regions (outer, barrier, inner, and core), extracted and analyzed by electrospray ionization tandem mass spectrometry. DESI-imaging also revealed a complementary distribution for the structurally-related lyso 1-O-alkyl phosphatidylethanolamine, LPE (18:1e), which was localized closer to the centre of the lens. The data obtained in this study indicate that DESI-imaging is a powerful tool for determining the spatial distribution of human lens lipids.  相似文献   
1000.
Two approaches to producing gradients of vertically aligned single-walled carbon nanotubes (SWCNTs) on silicon surfaces by chemical grafting are presented here. The first approach involves the use of a porous silicon (pSi) substrate featuring a pore size gradient, which is functionalized with 3-aminopropyltriethoxysilane (APTES). Carboxylated SWCNTs are then immobilized on the topography gradient via carbodiimide coupling. Our results show that as the pSi pore size and porosity increase across the substrate the SWCNT coverage decreases concurrently. In contrast, the second gradient is an amine-functionality gradient produced by means of vapor-phase diffusion of APTES from a reservoir onto a silicon wafer where APTES attachment changes as a function of distance from the APTES reservoir. Carboxylated SWCNTs are then immobilized via carbodiimide coupling to the amine-terminated silicon gradient. Our observations confirm that with decreasing APTES density on the surface the coverage of the attached SWCNTs also decreases. These gradient platforms pave the way for the time-efficient optimization of SWCNT coverage for applications ranging from field emission to water filtration to drug delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号