首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   20篇
  国内免费   1篇
化学   434篇
晶体学   3篇
力学   3篇
数学   28篇
物理学   47篇
  2024年   2篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   13篇
  2015年   12篇
  2014年   17篇
  2013年   25篇
  2012年   26篇
  2011年   25篇
  2010年   21篇
  2009年   7篇
  2008年   35篇
  2007年   23篇
  2006年   30篇
  2005年   33篇
  2004年   28篇
  2003年   22篇
  2002年   22篇
  2001年   10篇
  2000年   11篇
  1999年   12篇
  1998年   10篇
  1997年   8篇
  1996年   9篇
  1995年   7篇
  1994年   5篇
  1993年   9篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1988年   10篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   9篇
  1983年   4篇
  1981年   2篇
  1980年   7篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1964年   2篇
  1935年   1篇
排序方式: 共有515条查询结果,搜索用时 15 毫秒
51.
In a previous deuterium NMR study conducted on a liquid crystalline (LC) polymer with laterally attached book-shaped molecules as the mesogenic moiety, we have revealed a biaxial nematic phase below the conventional uniaxial nematic phase (Phys. Rev. Lett. 2004, 92, 125501). To elucidate details of its formation, we here report on deuterium NMR experiments that have been conducted on different types of LC side-chain polymers as well as on mixtures with low-molar-mass mesogens. Different parameters that affect the formation of a biaxial nematic phase, such as the geometry of the attachment, the spacer length between the polymer backbone and the mesogenic unit, as well as the polymer dynamics, were investigated. Surprisingly, also polymers with terminally attached mesogens (end-on polymers) are capable of forming biaxial nematic phases if the flexible spacer is short and thus retains a coupling between the polymer backbone and the LC phase. Furthermore, the most important parameter for the formation of a biaxial nematic phase is the dynamics of the polymer backbone, as the addition of a small percentage of low molar mass LC to the biaxial nematic polymer from the original study served to shift both the glass transition and the appearance of detectable biaxiality in a very similar fashion. Plotting different parameters for the investigated systems as a function of T/Tg also reveals the crucial role of the dynamics of the polymer backbone and hence the glass transition.  相似文献   
52.
53.
54.
55.
The highly substrate-specific strictosidine synthase (EC 4.3.3.2) catalyzes the biological Pictet-Spengler condensation between tryptamine and secologanin, leading to the synthesis of about 2000 monoterpenoid indole alkaloids in higher plants. The crystal structure of Rauvolfia serpentina strictosidine synthase (STR1) in complex with strictosidine has been elucidated here, allowing the rational site-directed mutation of the active center of STR1 and resulting in modulation of its substrate acceptance. Here, we report on the rational redesign of STR1 by generation of a Val208Ala mutant, further describing the influence on substrate acceptance and the enzyme-catalyzed synthesis of 10-methyl- and 10-methoxystrictosidines. Based on the addition of strictosidine to a crude strictosidine glucosidase preparation from Catharanthus cells, a combined chemoenzymatic approach to generating large alkaloid libraries for future pharmacological screenings is presented.  相似文献   
56.
57.
58.
In a comparative study the in vitro corrosion behavior of a selection of nickel- and cobalt-based alloys for application in dentistry containing no noble metals was studied with slow scan cyclic voltammetry. The obtained breakthrough potentials, the repassivation behavior and further typical features of the cyclic voltamograms are correlated with the chemical composition as measured with electron beam microanalysis. Surface inhomogenities detected with the latter method are discussed with respect to the electrochemical behavior. For all alloys stabilities in terms of breakthrough potential superior to previously reported data for nickel-base alloys are found.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号