首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   432篇
  免费   21篇
化学   295篇
晶体学   8篇
力学   14篇
数学   36篇
物理学   100篇
  2023年   6篇
  2022年   5篇
  2021年   8篇
  2020年   8篇
  2019年   6篇
  2018年   4篇
  2017年   8篇
  2016年   10篇
  2015年   15篇
  2014年   13篇
  2013年   18篇
  2012年   27篇
  2011年   23篇
  2010年   18篇
  2009年   11篇
  2008年   14篇
  2007年   27篇
  2006年   21篇
  2005年   10篇
  2004年   16篇
  2003年   9篇
  2002年   7篇
  2001年   6篇
  2000年   8篇
  1999年   11篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1989年   2篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   7篇
  1981年   12篇
  1980年   7篇
  1979年   10篇
  1978年   7篇
  1977年   10篇
  1976年   7篇
  1975年   10篇
  1974年   8篇
  1973年   2篇
  1970年   3篇
  1935年   2篇
排序方式: 共有453条查询结果,搜索用时 859 毫秒
71.
Vapor–liquid equilibrium (VLE) data are presented for the n-butane + ethanol system in the temperature range from 323 to 423 K. Measurements were performed using a “static-analytic” apparatus, equipped with two electromagnetic ROLSI™ capillary samplers, and thermally regulated via an air bath. This work presents vapor compositions which have not been explicitly measured previously. The modeling of the data was performed using two models: the Peng–Robinson equation of state with the Wong and Sandler mixing rule and NRTL excess function (PR/WS/NRTL); and the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state. To assess the effect of dipole–dipole interactions present, a dipolar contribution developed by Jog and Chapman (1999) [20] was tested with the second model. Temperature dependent binary interaction parameters have been adjusted to the new data. The PR/WS/NRTL equation of state shows good correlation with the results, while the PC-SAFT is slightly less accurate.  相似文献   
72.
A gradient LC method for the analysis of capreomycin sulfate and its related substances was developed. The chromatographic conditions include the use of a Hypersil base deactivated C18 (250 mm × 4.6 mm, 5 μm) column maintained at 25 °C, a mobile phase containing acetonitrile, phosphate buffer pH 2.3 and 0.025 M hexanesulfonate at a flow rate of 1.0 mL/min and UV detection performed at 268 nm. Good separation of the four active components of capreomycin and eleven unknown impurities was achieved. A system suitability test to check the quality of the separation is specified. The method shows good repeatability, linearity and robustness.  相似文献   
73.
The electrochemical behavior of a new cobalt–cyclodextrin (CD) complex was investigated, in dimethylformamide, from CoX2 (X = Br and BF4) in the presence of 1 equiv. 6-Deoxy-6-N-(2-methyliminopyridine)-β-cyclodextrin as ligand. Under these conditions, it was demonstrated for the first time, that the electrogenerated cobalt(I) species can be kinetically and thermodynamically stabilized. The electrochemical study of CoX2 in the presence of a related iminopyridine ligand (2-pyridyl-N-benzylmethylimine), in which the cyclodextrin (CD) group was replaced by a simple aryl moiety, allowed to highlight the crucial role of the CD in this unexpected stabilization. Importantly, this unprecedented result was only observed when both the iminepyridine and the CD moieties were together covalently attached. Importantly, the supramolecular stabilized low-valent cobalt species remained fairly reactive towards aromatic halides despite its intrinsic stability. This original work opens new opportunities for the development of more selective catalytic processes both in organic and aqueous media.  相似文献   
74.
Cobalt ferrite magnetic nanostructures were synthesized via a high temperature solution phase method. Spherical nanostructures of various sizes were synthesized with the help of seed mediated growth of the nanostructures in organic phase, while faceted irregular (FI) cobalt ferrite nanostructures were synthesized via the same method but in the presence of a magnetic field. Magnetic properties were characterized by SQUID magnetometry, relaxivity measurements and thermal activation under RF field, as a function of size and shape. The results show that the saturation magnetization of the nanostructures increases with an increase in size, and the FI nanostructures exhibit lower saturation magnetization than their spherical counterparts. The relaxivity coefficient of cobalt ferrite nanostructures increases with increase in size; while FI nanostructures show a higher relaxivity coefficient than spherical nanostructures with respect to their saturation magnetization. In the case of RF thermal activation, the specific absorption rate (SAR) of nanostructures increases with increase in the size. The contribution sheds light on the role of size and shape on important magnetic properties of the nanostructures in relation to their biomedical applications.  相似文献   
75.
The photodissociation dynamics of small I-(H2O)n(n=2-5) clusters excited to their charge-transfer-to-solvent (CTTS) states have been studied using photofragment coincidence imaging. Upon excitation to the CTTS state, two photodissociation channels were observed. The major channel (approximately 90%) is a two-body process forming neutral I+(H2O)n photofragments, and the minor channel is a three-body process forming I+(H2O)n-1+H2O fragments. Both processes display translational energy [P(ET)] distributions peaking at ET=0 with little available energy partitioned into translation. Clusters excited to the detachment continuum rather than to the CTTS state display the same two channels with similar P(ET) distributions. The observation of similar P(ET) distributions from the two sets of experiments suggests that in the CTTS experiments, I atom loss occurs after autodetachment of the excited [I(H2O)n-]* cluster or, less probably, that the presence of the excess electron has little effect on the departing I atom.  相似文献   
76.
Distance-of-flight mass spectrometry (DOFMS) is demonstrated for the first time with a commercially available ion detector—the IonCCD camera. Because DOFMS is a velocity-based MS technique that provides spatially dispersive, simultaneous mass spectrometry, a position-sensitive ion detector is needed for mass-spectral collection. The IonCCD camera is a 5.1-cm long, 1-D array that is capable of simultaneous, multichannel ion detection along a focal plane, which makes it an attractive option for DOFMS. In the current study, the IonCCD camera is evaluated for DOFMS with an inductively coupled plasma (ICP) ionization source over a relatively short field-free mass-separation distance of 25.3–30.4 cm. The combination of ICP-DOFMS and the IonCCD detector results in a mass-spectral resolving power (FWHM) of approximately 900 and isotope-ratio precision equivalent to or slightly better than current ICP-TOFMS systems. The measured isotope-ratio precision in % relative standard deviation (%RSD) was ≥0.008%RSD for nonconsecutive isotopes at 10-ppm concentration (near the ion-signal saturation point) and ≥0.02%RSD for all isotopes at 1-ppm. Results of DOFMS with the IonCCD camera are also compared with those of two previously characterized detection setups.
Graphical Abstract ?
  相似文献   
77.
The main chromophore of (6‐4) photoproducts, namely, 5‐methyl‐2‐pyrimidone (Pyo), is an artificial noncanonical nucleobase. This chromophore has recently been reported as a potential photosensitizer that induces triplet damage in thymine DNA. In this study, we investigate the spectroscopic properties of the Pyo unit embedded in DNA by means of explicit solvent molecular‐dynamics simulations coupled to time‐dependent DFT and quantum‐mechanics/molecular‐mechanics techniques. Triplet‐state transfer from the Pyo to the thymine unit was monitored in B‐DNA by probing the propensity of this photoactive pyrimidine analogue to induce a Dexter‐type triplet photosensitization and subsequent DNA damage.  相似文献   
78.
79.
A well‐defined random copolymer of styrene (S) and chloromethylstyrene (CMS) featuring lateral chlorine moieties with an alkyne terminal group is prepared (P(S‐co‐CMS), = 5500 Da, PDI = 1.13). The chloromethyl groups are converted into Hamilton wedge (HW) entities (P(S‐co‐HWS), = 6200 Da, PDI = 1.13). The P(S‐co‐HWS) polymer is subsequently ligated with tetrakis(4‐azidophenyl)methane to give HW‐functional star‐shaped macromolecules (P(S‐co‐HWS))4, = 25 100 Da, PDI = 1.08). Supramolecular star‐shaped copolymers are then prepared via self‐assembly between the HW‐functionalized four‐arm star‐shaped macromolecules ( P(S‐co‐HW )) 4 and cyanuric acid (CA) end‐functionalized PS (PS–CA, = 3700 Da, PDI = 1.04), CA end‐functionalized poly(methyl methacrylate) (PMMA–CA, = 8500 Da, PDI = 1.13) and CA end‐functionalized polyethylene glycol (PEG–CA, = 1700 Da, PDI = 1.05). The self‐assembly is monitored by 1H NMR spectroscopy and light scattering analyses.  相似文献   
80.
Electrochemical stripping techniques are interesting candidates for carrying out onsite speciation of environmentally relevant trace metals due to the existing low-cost portable instrumentation available and the low detection limits that can be achieved. In this work, we describe the initial analytical technique method development by quantifying the total metal concentrations using Stripping Chronopotentiometry (SCP). Carbon paste screen-printed electrodes were modified with thin films of mercury and used to quantify sub-nanomolar concentrations of lead and cadmium and sub-micromolar concentrations of zinc in river water. Low detection limits of 0.06 nM for Pb(II) and 0.04 nM for Cd(II) were obtained by the standard addition method using a SCP deposition time of 180 s. The SCP results obtained for Pb(II) and Cd(II) agreed with those of inductively coupled plasma mass spectrometry (ICP-MS). The coupling of SCP with screen-printed electrodes opens up excellent potential for the development of onsite speciation of trace metals. Due to the low analysis throughput obtained for the standard addition method, we also propose a new, more rapid screening Cd(II) internal standard methodology to significantly increase the number of samples that can be analyzed per day.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号