首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1139篇
  免费   54篇
  国内免费   1篇
化学   996篇
晶体学   5篇
力学   9篇
数学   73篇
物理学   111篇
  2023年   6篇
  2022年   17篇
  2021年   21篇
  2020年   28篇
  2019年   16篇
  2018年   14篇
  2017年   11篇
  2016年   37篇
  2015年   22篇
  2014年   44篇
  2013年   47篇
  2012年   82篇
  2011年   82篇
  2010年   57篇
  2009年   34篇
  2008年   56篇
  2007年   61篇
  2006年   50篇
  2005年   60篇
  2004年   44篇
  2003年   34篇
  2002年   49篇
  2001年   12篇
  2000年   8篇
  1999年   13篇
  1998年   11篇
  1997年   9篇
  1996年   5篇
  1995年   11篇
  1994年   10篇
  1993年   5篇
  1991年   5篇
  1990年   7篇
  1989年   5篇
  1987年   10篇
  1985年   12篇
  1984年   15篇
  1982年   11篇
  1980年   10篇
  1978年   11篇
  1977年   11篇
  1976年   13篇
  1975年   7篇
  1973年   9篇
  1962年   6篇
  1947年   6篇
  1937年   4篇
  1935年   5篇
  1928年   5篇
  1920年   4篇
排序方式: 共有1194条查询结果,搜索用时 15 毫秒
161.
The retention behavior of a series of fat-soluble vitamins has been established on the basis of a polarity retention model: log k = (log k)(0) + p (P(m) (N) - P(s) (N)), with p being the polarity of the solute, P(m) (N) the mobile phase polarity, and (log k)(0) and P(m) (N) two parameters for the characterization of the stationary phase. To estimate the p-values of solutes, two approaches have been considered. The first one is based on the application of a QSPR model, derived from the molecular structure of solutes and their log P(o/w), while in the second one, the p-values are obtained from several experimental measurements. The quality of prediction of both approaches has also been evaluated, with the second one giving more accurate results for the most lipophilic vitamins. This model allows establishing the best conditions to separate and determine simultaneously some fat-soluble vitamins in dairy foods.  相似文献   
162.
Multifunctional probes are synthesized in a single step using peptide scaffold-based multifunctional single-attachment-point (MSAP) reagents.  相似文献   
163.
164.
The Ugi reaction with CF3-carbonyl compounds is described in detail. The method is efficient for the multicomponent preparation of α-trifluoromethyl (Tfm) amino acids, α-Tfm containing dipeptides, and iminodicarboxylic acids. In addition, the first protected CF3-opine derivative was prepared. The scope, limitations, and stereochemistry of the approach are discussed.  相似文献   
165.
A selective and sensitive method is presented for biogenic amines (BA) determination. The novelty consists in coupling a highly selective electrochemical biosensor to a weak acid cation-exchange column for online detection of amines. A bienzyme design, based on a recently isolated amine oxidase from grass pea and commercial horseradish peroxidase, was used for the biosensor construction. The enzymes were co-immobilized on the surface of a graphite electrode together with the electrochemical mediator (Os-redox polymer). The electrochemical detection was performed at a low applied potential (?50 mV vs. Ag/AgCl, KCl0.1 M), where biases from interferences are minimal. The separation and determination of six BA, with relevance in food analysis (tyramine, putrescine, cadaverine, histamine, agmatine and spermidine), were investigated. Irrespective of the BA nature, the amine oxidase-based biosensor showed a linear response up to 5 mM, and its sensitivity decreases in the following order: cadaverine, putrescine, spermidine, agmatine, histamine and tyramine. The approach was used to estimate the BA content in fish samples, after their extraction with methanesulfonic acid.  相似文献   
166.
The performance of the most common and also some other less common CE buffers has been tested for the pKa determination of several types of compounds (pyridine, amines, and phenols). The selected buffers cover a pH ranging from 3.7 to 11.8. Whereas some buffers, like acetic acid/acetate, BisTrisH+/BisTris, TrisH+/Tris, CHES/CHES-, and CAPS/CAPS- can be used with all type of analytes, others like ammonium/ammonia, butylammonium/butylammonia, ethylammonium/ethylammonia, diethylammonium/diethylammonia, and hydrogenphosphate/phosphate are not recommended because they interact with a wide range of compounds. The rest of the tested buffers (dihydrogenphosphate/hydrogenphosphate, MES/MES-, HEPES/HEPES-, and boric acid/borate) can show specific interactions depending on the nature of the analytes, and their use in some applications should be restricted.  相似文献   
167.
We describe here a near infrared light-responsive elastin-like peptide (ELP)-based targeted nanoparticle (NP) that can rapidly switch its size from 120 to 25 nm upon photo-irradiation. Interestingly, the targeting function, which is crucial for effective cargo delivery, is preserved after transformation. The NPs are assembled from (targeted) diblock ELP micelles encapsulating photosensitizer TT1-monoblock ELP conjugates. Methionine residues in this monoblock are photo-oxidized by singlet oxygen generated from TT1, turning the ELPs hydrophilic and thus trigger NP dissociation. Phenylalanine residues from the diblocks then interact with TT1 via π-π stacking, inducing the re-formation of smaller NPs. Due to their small size and targeting function, the NPs penetrate deeper in spheroids and kill cancer cells more efficiently compared to the larger ones. This work could contribute to the design of “smart” nanomedicines with deeper penetration capacity for effective anticancer therapies.  相似文献   
168.
Electrochemical methods employing the hanging mercury drop electrode were used to study the interaction between variants of the complement-derived antimicrobial peptide CNY21 (CNYITELRRQH ARASHLGLAR) and dioleoyl phosphatidylcholine (DOPC) monolayers. Capacitance potential and impedance measurements showed that the CNY21 analogues investigated interact with DOPC monolayers coating the mercury drop. Increasing the peptide hydrophobicity by substituting the two histidine residues with leucine resulted in a deeper peptide penetration into the hydrophobic region of the DOPC monolayer, indicated by an increase in the dielectric constant of the lipid monolayer (Deltaepsilon = 2.0 after 15 min interaction). Increasing the peptide net charge from +3 to +5 by replacing the histidines by lysines, on the other hand, arrests the peptide in the lipid head group region. Reduction of electroactive ions (Tl+, Pb2+, Cd2+, and Eu3+) at the monolayer-coated electrode was employed to further characterize the types of defects induced by the peptides. All peptides studied permeabilize the monolayer to Tl+ to an appreciable extent, but this effect is more pronounced for the more hydrophobic peptide (CNY21L), which also allows penetration of larger ions and ions of higher valency. The results for the various ions indicate that charge repulsion rather than ion size is the determining factor for cation penetration through peptide-induced defects in the DOPC monolayer. The effects obtained for monolayers were compared to results obtained with bilayers from liposome leakage and circular dichroism studies for unilamellar DOPC vesicles, and in situ ellipsometry for supported DOPC bilayers. Trends in peptide-induced liposome leakage were similar to peptide effects on electrochemical impedance and permeability of electroactive ions for the monolayer system, demonstrating that formation of transmembrane pores alone does not constitute the mechanism of action for the peptides investigated. Instead, our results point to the importance of local packing defects in the lipid membrane in close proximity to the adsorbed peptide molecules.  相似文献   
169.
The elaboration of nanoparticles designed for technological applications in various fields such as catalysis, optics, magnetism, electronics… needs the strict control of their characteristics, especially chemical composition, crystalline structure, size, and shape. These characteristics bring the physical properties (color, magnetism, band gap…) of the material, and also the surface to volume ratio of particles which is of high importance when they are used as a chemically active or reactive support, in catalysis for instance. The nanoparticles may have also to be surface functionalized by various species, and/or dispersed in aqueous or non aqueous media. We will show that the aqueous chemistry of metal cations is a very versatile and attractive way for the design of oxide nanomaterials, allowing the control of size, shape, and crystalline structure for polymorphic materials. Aqueous surface chemistry, including adsorption of various species, may be used to modify the morphology of nanoparticles. In some cases, redox processes can be involved to control the morphology of nanoparticles. Technologically important nanomaterials such as titania, alumina, and iron oxides are studied.  相似文献   
170.
New Pt complexes of chelating bisguanidines and guanidinate ligands were synthesized and characterized. 1,2-Bis(N,N,N',N'-tetramethylguanidino)benzene (btmgb) was used as a neutral chelating bisguanidine ligand, and 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinate (hpp(-)) as a guanidinate ligand. The salts [btmgbH](+)[HOB(C(6)F(5))(3)](-) and [btmgbH(2)]Cl(2) and the complexes [(btmgb)PtCl(2)], [(btmgb)PtCl(dmso)](+)[PtCl(3)(dmso)](-), and [(btmgb)PtCl(dmso)](+)[Cl(-)] were synthesized and characterized. In the [btmgbH](+) cation the proton is bound to only one N atom. In the other complexes, both imine N atoms are coordinated to the Pt(II), thus adopting a eta(2)-coordinational mode. The hpp(-) anion, which usually prefers a bridging binding mode in dinuclear complexes, is eta(2)-coordinated in the Pt(IV) complex [(eta(2)-hpp)(hppH)PtCl(2){N(H)C(O)CH(3)}], which is formed (in low yield) by reaction between cis-[(hppH)(2)PtCl(2)] and H(2)O(2) in CH(3)CN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号