首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   319篇
  免费   9篇
  国内免费   3篇
化学   242篇
晶体学   1篇
力学   6篇
数学   22篇
物理学   60篇
  2023年   2篇
  2022年   15篇
  2021年   5篇
  2020年   10篇
  2019年   4篇
  2018年   7篇
  2017年   8篇
  2016年   11篇
  2015年   12篇
  2014年   10篇
  2013年   23篇
  2012年   29篇
  2011年   27篇
  2010年   13篇
  2009年   25篇
  2008年   20篇
  2007年   23篇
  2006年   18篇
  2005年   9篇
  2004年   13篇
  2003年   4篇
  2002年   10篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1985年   1篇
  1981年   2篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
排序方式: 共有331条查询结果,搜索用时 15 毫秒
261.
In this article, the separation and the purification of the acrylic acid produced from renewable sugars were studied using the liquid-liquid extraction process. Nonrandom two-liquids and universal quasi-chemical models and the prediction method universal quasi-chemical functional activity coefficients were used for generating liquid-liquid equilibrium diagrams for systems made up of acrylic acid, water, and solvents (diisopropyl ether, isopropyl acetate, 2-ethyl hexanol, and methyl isobutyl ketone) and the results were compared with available liquid-liquid equilibrium experimental data. Aspen Plus (Aspen Technology, Inc., version 2004.1) software was used for equilibrium and process calculations. High concentration of acrylic acid was obtained in this article using diisopropyl ether as solvent.  相似文献   
262.
The analysis of pesticides in water samples is a problem of primary concern for quality control laboratories due to the toxicity level of these compounds and their public health risk. In order to evaluate the impact of pesticides in the Lisbon drinking water supply system, following the requirements of the European Union Directive 98/83/EC, we developed and validated an analytical method based on the combination of solid-phase extraction with liquid chromatography and tandem mass spectrometry. In this work, several pesticides were studied: imidacloprid, dimethoate, cymoxanil, carbendazime, phosmet, carbofuran, isoproturon, diuron, methidathion, linuron, pyrimethanil, methiocarbe, tebuconazole and chlorpyrifos. Several parameters of the electrospray source were optimized in order to get the best formation conditions of the precursor ion for each pesticide, namely capillary and extractor voltage, cone voltage, cone gas flow rate and desolvation gas flow rate. After optimization of the collision cell energy of the triple quadrupole, two different precursor ion-product ion transitions were selected for each pesticide, one for quantification and one for qualification, and these ions were monitored under time-scheduled multiple reaction monitoring (MRM) conditions. The selection of specific fragment ions for each pesticide guarantees a high degree of selectivity as well as additional sensitivity to quantify trace levels of these pesticides in water samples. This method showed excellent linearity ranges for all pesticides, with correlation coefficients greater than 0.9989. Determination limits (between 0.0041 and 0.0480 microg/L), precision (RSD <9.18%), accuracy and recovery studies in several water samples using solid-phase extraction were also performed.  相似文献   
263.
In this work we present equilibrium and dynamic surface tension together with dilational elasticity data for dodecyltrimethylammonium bromide in the presence of lambda-carrageenan, a sulfated polysaccharide extracted from algae. The critical aggregation concentration and (CAC) and critical micellar concentration CMC of the mixed system were determined and shown to have a direct influence on the elasticity modulus. The behavior of the adsorption kinetics was shown to be dependent on the surfactant to polyelectrolyte charge ratio or excess species in the bulk solution.  相似文献   
264.
The vesicle-micelle transition in aqueous mixtures of dioctadecyldimethylammonium and octadecyltrimethylammonium bromide (DODAB and C(18)TAB) cationic surfactants, having respectively double and single chain, was investigated by differential scanning calorimetry (DSC), steady-state fluorescence, dynamic light scattering (DLS) and surface tension. The experiments performed at constant total surfactant concentration, up to 1.0 mM, reveal that these homologous surfactants mix together to form mixed vesicles and/or micelles, depending on the relative amount of the surfactants. The melting temperature T(m) of the mixed DODAB-C(18)TAB vesicles is larger than that for the neat DODAB in water owing to the incorporation of C(18)TAB in the vesicle bilayer. The surface tension decreases sigmoidally with C(18)TAB concentration and the inflection point lies around x(DODAB) approximately 0.4, indicating the onset of micelle formation owing to saturation of DODAB vesicles by C(18)TAB molecules. When x(DODAB)>0.5 C(18)TAB molecules are mainly solubilised by the vesicles, but when x(DODAB)<0.25 micelles are dominant. Fluorescence data of the Nile Red probe incorporated in the system at different surfactant molar fractions indicate the formation of micelle and vesicle structures. These structures have apparent hydrodynamic radius R(H) of about 180 and 500-800 nm, respectively, as obtained by DLS measurements.  相似文献   
265.
Lignocellulosic materials can significantly contribute to the development of composites, since it is possible to chemically and/or physically modify their main components, cellulose, hemicelluloses and lignin. This may result in materials more stable and with more uniform properties. It has previously been shown that chemically modified sisal fibers by ClO(2) oxidation and reaction with FA and PFA presented a thin coating layer of PFA on their surface. FA and PFA were chosen as reagents because these alcohols can be obtained from renewable sources. In the present work, the effects of the polymeric coating layer as coupling agent in phenolic/sisal fibers composites were studied. For a more detailed characterization of the fibers, IGC was used to evaluate the changes that occurred at the sisal fibers surface after the chemical modifications. The dispersive and acid-base properties of untreated and treated sisal fibers surfaces were determined. Biodegradation experiments were also carried out. In a complementary study, another PFA modification was made on sisal fibers, using K2Cr2O(7) as oxidizing agent. In this case the oxidation effects involve mainly the cellulose polymer instead of lignin, as observed when the oxidation was carried out with ClO(2). The SEM images showed that the oxidation of sisal fibers followed by reaction with FA or PFA favored the fiber/phenolic matrix interaction at the interface. However, because the fibers were partially degraded by the chemical treatment, the impact strength of the sisal-reinforced composites decreased. By contrast, the chemical modification of fibers led to an increase of the water diffusion coefficient and to a decrease of the water absorption of the composites reinforced with modified fibers. The latter property is very important for certain applications, such as in the automotive industry.  相似文献   
266.
In this work, a systematic method to support the building of bioprocess models through the use of different optimization techniques is presented. The method was applied to a tower bioreactor for bioethanol production with immobilized cells of Saccharomyces cerevisiae. Specifically, a step-by-step procedure to the estimation problem is proposed. As the first step, the potential of global searching of real-coded genetic algorithm (RGA) was applied for simultaneous estimation of the parameters. Subsequently, the most significant parameters were identified using the Placket–Burman (PB) design. Finally, the quasi-Newton algorithm (QN) was used for optimization of the most significant parameters, near the global optimum region, as the initial values were already determined by the RGA global-searching algorithm. The results have shown that the performance of the estimation procedure applied in a deterministic detailed model to describe the experimental data is improved using the proposed method (RGA–PB–QN) in comparison with a model whose parameters were only optimized by RGA.  相似文献   
267.
Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2 × 2 × 2 factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse as it comes from an alcohol/sugar factory and bagasse in the size range of 0.248 to 1.397 mm (12–60 mesh). The results show that when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for nonscreened bagasse using 0.40 g lime/g dry biomass at 70 °C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of nonscreened bagasse are not very different.  相似文献   
268.
Cordierite foams were prepared by replication of polyurethane foams and were coated with three types of carbon xerogels. The dip coating and synthesis conditions were optimized, and the coated foams were characterized exhaustively. The composition of the starting solution, coat loading, and carbonization temperature are the most important parameters determining both textural and mechanical properties. Carbon xerogel coatings obtained from aqueous solutions of resorcinol (R) and formaldehyde (F) are macro-, meso-, and microporous but present the greatest shrinkage, which causes a loss of adhesion between ceramic foams and carbon coatings. The coatings from polyfurfuryl alcohol (PFA) and RF-poly(vinyl butyral) (Butvar) resin are highly microporous and present very good adhesion even after carbonization. In all cases, coatings induce the improvement of the mechanical properties, which is related to the fact that the coating fills the defects present in the cordierite foams, thereby affecting both the rigidity and the way cracks propagate through the coated samples. These materials, due to the synergetic role of the highly porous coatings and the tortuous channels of the ceramic foams, are suitable materials for adsorption or catalytic treatments of fluids.  相似文献   
269.
Although several methods for the analysis of nitrogen compounds in diesel fuel have been described in the literature, the demand for rapid, sensitive, and robust analyses has increased in recent years. In this study, a comprehensive two‐dimensional gas chromatographic method was developed for the identification and quantification of nitrogen compounds in diesel fuel samples. The quantification was performed using the standard addition method and the analysis was conducted using comprehensive two‐dimensional gas chromatography coupled with fast quadrupole mass spectrometry. This study is the first to report quantification of nitrogen compounds in diesel fuel samples using the standard addition method without fractionation. This type of analysis was previously performed using many laborious separation steps, which can lead to errors and losses. The proposed method shows good linearity for target nitrogen compounds evaluated (m‐toluidine, 4‐ethylaniline, indole, 7‐methylindole, 7‐ethylindole, carbazole, isoquinoline, 4‐methylquinoline, benzo[h]quinolone, and acridine) over a range from 0.05 to 2.0 mg/L, and limits of detection and quantification of <0.06 and 0.16 mg/L, respectively, for all nitrogen compounds studied.  相似文献   
270.
Photodynamic therapy combines visible light and a photosensitizer (PS) in the presence of molecular oxygen to generate reactive oxygen species able to modify biological structures such as phospholipids. Phosphatidylethanolamines (PEs), being major phospholipid constituents of mammalian cells and membranes of Gram‐negative bacteria, are potential targets of photosensitization. In this work, the oxidative modifications induced by white light in combination with cationic porphyrins (Tri‐Py+‐Me‐PF and Tetra‐Py+‐Me) were evaluated on PE standards. Electrospray ionization mass spectrometry (ESI‐MS) and tandem mass spectrometry (ESI‐MS/MS) were used to identify and characterize the oxidative modifications induced in PEs (POPE: PE 16:0/18:1, PLPE: PE 16:0/18:2, PAPE: PE 16:0/20:4). Photo‐oxidation products of POPE, PLPE and PAPE as hydroxy, hydroperoxy and keteno derivatives and products due to oxidation in ethanolamine polar head were identified. Hydroperoxy‐PEs were found to be the major photo‐oxidation products. Quantification of hydroperoxides (PE‐OOH) allowed differentiating the potential effect in photodamage of the two porphyrins. The highest amounts of PE‐OOH were notorious in the presence of Tri‐Py+‐Me‐PF, a highly efficient PS against bacteria. The identification of these modifications in PEs is an important key point in the understanding cell damage processes underlying photodynamic therapy approaches. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号