首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   3篇
  国内免费   1篇
化学   86篇
晶体学   4篇
力学   70篇
数学   19篇
物理学   58篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   7篇
  2015年   12篇
  2014年   4篇
  2013年   9篇
  2012年   14篇
  2011年   16篇
  2010年   10篇
  2009年   7篇
  2008年   20篇
  2007年   14篇
  2006年   10篇
  2005年   10篇
  2004年   8篇
  2003年   4篇
  2002年   11篇
  2001年   3篇
  2000年   9篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1993年   3篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   3篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1963年   1篇
  1862年   1篇
排序方式: 共有237条查询结果,搜索用时 31 毫秒
61.
62.
63.
64.
65.
The recently proposed neo-classical theory for nematic elastomers generalizes standard molecular-statistical Gaussian network theory to allow for anisotropic distributions of polymer chains. The resulting free-energy density models several of the novel properties of nematic elastomers. In particular, it predicts the ability of nematic elastomers to undergo large deformations with exactly zero force and energy cost—so called soft elasticity. Although some nematic elastomers have been shown to undergo deformations with unusually small applied forces, not all do so, and none deform with zero force. Further, as a zero force corresponds to infinitely many possible deformations in the neo-classical theory, this non-uniqueness leads to serious indeterminacies in numerical schemes. Here we suggest that the neo-classical free-energy density is incomplete and propose an alternative derivation that resolves these difficulties. In our approach, we use the molecular-statistical theory to identify appropriate variables. This yields the choice for the microstructural degrees of freedom as well as two independent strain tensors (the overall macroscopic strain plus a relative strain that indicates how the deformation of the elastomeric microstructure deviates from the macroscopic deformation). We then propose expressions for the free-energy density as a function of the three quantities and show how the material parameters can be measured by two simple tests. The neo-classical free-energy density can be viewed as a special case of our expressions in which the free-energy density is independent of the overall macroscopic strain, thus supporting our view that the neo-classical theory is incomplete.  相似文献   
66.
This paper presents new analytical results and the first numerical results for a recently proposed multiscale deconvolution model (MDM) recently proposed. The model involves a large‐eddy simulation closure that uses a novel deconvolution approach based on the introduction of two distinct filtering length scales. We establish connections between the MDM and two other models, and, on the basis of one of these connections, we establish an improved regularity estimate for MDM solutions. We also prove that the MDM preserves Taylor‐eddy solutions of the Navier–Stokes equations and therefore does not distort this particular vortex structure. Simulations of the MDM are performed to examine the accuracy of the MDM and the effect of the filtering length scales on energy spectra for three‐dimensional homogeneous and isotropic flows. Numerical evidence for all tests clearly indicates that the MDM gives very accurate coarse‐mesh solutions and that this multiscale approach to deconvolution is effective. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
67.

Objective

Magnetic resonance spectroscopy (MRS) allows to monitor brain metabolites noninvasively in amyotrophic lateral sclerosis (ALS). The objective of this study was to use MRS to monitor the effect of minocycline treatment (200 mg/day) over a short period (6 weeks) on the brain metabolites in the precentral gyrus and brainstem in newly diagnosed ALS patients.

Methods

Ten ALS patients (not on riluzole treatment) were recruited and submitted to single-voxel proton MRS longitudinal examinations (1) before minocycline treatment, (2) 3 weeks and (3) 6 weeks after initiation of treatment.

Results

Results did not show the expected decrease of N-acetylaspartate/creatine (NAA/Cr) in the precentral gyrus, and an increased NAA/Cr ratio in the brainstem suggested neuronal recovery. The myo-inositol (mI)/Cr ratio was unchanged in the precentral gyrus, but increased in the brainstem, indicating a glial reaction.

Conclusions

MRS results suggest that minocycline treatment could be beneficial in the early stages of ALS.  相似文献   
68.
In a nematic elastomer the deformation of the polymer network chains is coupled to the orientational order of the mesogenic groups. Statistical arguments have derived the so-called neoclassical free energy that models this coupling. Here we show that the neoclassical model supplemented by the usual Frank energy predicts incompatible network strains associated with the formation of standard nematic textures. The incompatibility is measured by the Riemann curvature tensor, which we find to be nonzero for both radial hedgehog defects and escaped disclinations of strength +1 in circular cylinders. Analogous problems for conventional nonlinearly elastic solids do not possess solutions with such incompatibilities. Compatibility in nematic elastomers would require either more complicated nematic textures in elastomers than in conventional (polymeric and low molecular weight) liquid crystals or a free-energy density more complicated than the neoclassical expression.  相似文献   
69.
Optical tomography belongs to the promising set of non-invasive methods for probing applications of semi-transparent media. This covers a wide range of fields. Nowadays, it is mainly driven by medical imaging in search of new less aggressive and affordable diagnostic means. This paper aims at presenting the most recent research accomplished in the authors’ laboratories as well as that of collaborative institutions concerning the development of imaging algorithms. The light transport modelling is not a difficult question as it used to be. Research is now focused on data treatment and reconstruction. Since the turn of the century, the rapid expansion of low cost computing has permitted the development of enhanced imaging algorithms with great potential. Some of these developments are already on the verge of clinical applications. This paper presents these developments and also provides some insights on still unresolved challenges. Intrinsic difficulties are identified and promising directions for solutions are discussed.  相似文献   
70.
On Finite Shear     
If a pair of material line elements, passing through a typical particle P in a body, subtend an angle Θ before deformation, and Θ+γ after deformation, the pair of material elements is said to be sheared by the amount γ. Here all pairs of material elements at P are considered for arbitrary deformations. Two main problems are addressed and solved. The first is the determination of all pairs of material line elements at P which are unsheared. The second is the determination of that pair of material line elements at P which suffers the maximum shear. All unsheared pairs of material elements in a given plane π(S) with normal S passing through P are considered. Provided π(S) is not a plane of central circular section of the C-ellipsoid at P (where C is the right Cauchy-Green strain tensor), it is seen that corresponding to any material element in π(S) there is, in general, one companion material element in π(S) such that the element and its companion are unsheared. There are, however, two elements in π(S) which have no companions. We call their corresponding directions \textit{limiting directions.} Equally inclined to the direction of least stretch in the plane π(S), the limiting directions play a central role. It is seen that, in a given plane π(S), the pair of material line elements which suffer the maximum shear lie along the limiting directions in π(S). If Θ L is the acute angle subtended by the limitig directions in π(S) before deformation, then this angle is sheared into its supplement π−Θ L so that the maximum shear γ*;(S) is γ*=π− 2 Θ L . If S is given and C is known, then Θ L may be determined immediately. Its calculation does not involve knowing the eigenvectors or eigenvalues of C. When all possible planes through P are considered, it is seen that the global maximum shear γ* G occurs for material elements lying along the limiting directions in the plane spanned by the eigenvectors of C corresponding to the greatest principal stretch λ3 and the least λ1. The limiting directions in this principal plane of C subtend the angle and . Generally the maximum shear does not occur for a pair of material elements which are originally orthogonal. For a given material element along the unit vector N, there is, in general, in each plane π(S passing through N at P, a companion vector M such that material elements along N and M are unsheared. A formula, originally due to Joly (1905), is presented for M in terms of N and S. Given an unsheared pair π(S), the limiting directions in π(S) are seen to be easily determined, either analytically or geometrically. Planar shear, the change in the angle between the normals of a pair of material planar elements at X, is also considered. The theory of planar shear runs parallel to the theory of shear of material line elements. Corresponding results are presented. Finally, another concept of shear used in the geology literature, and apparently due to Jaeger, is considered. The connection is shown between Cauchy shear, the change in the angle of a pair of material elements, and the Jaeger shear, the change in the angle between the normal N to a planar element and a material element along the normal N. Although Jaeger's shear is described in terms of one direction N, it is seen to implicitly include a second material line element orthogonal to N. Accepted: May 25, 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号