首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   835篇
  免费   25篇
  国内免费   12篇
化学   488篇
晶体学   3篇
力学   42篇
数学   163篇
物理学   176篇
  2023年   4篇
  2022年   15篇
  2021年   14篇
  2020年   20篇
  2019年   22篇
  2018年   23篇
  2017年   17篇
  2016年   21篇
  2015年   22篇
  2014年   31篇
  2013年   45篇
  2012年   33篇
  2011年   49篇
  2010年   35篇
  2009年   36篇
  2008年   50篇
  2007年   38篇
  2006年   39篇
  2005年   28篇
  2004年   36篇
  2003年   15篇
  2002年   22篇
  2001年   16篇
  2000年   16篇
  1999年   11篇
  1998年   16篇
  1997年   7篇
  1996年   10篇
  1995年   12篇
  1994年   8篇
  1993年   8篇
  1992年   5篇
  1991年   17篇
  1990年   19篇
  1989年   16篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   5篇
  1983年   8篇
  1981年   4篇
  1980年   6篇
  1979年   4篇
  1978年   6篇
  1977年   6篇
  1976年   9篇
  1973年   3篇
  1972年   5篇
  1971年   3篇
  1914年   2篇
排序方式: 共有872条查询结果,搜索用时 15 毫秒
731.
Wound healing properties of plant extracts that contain the naphthoquinone natural products alkannin ( 1 ) and shikonin ( 2 ) have been known for many centuries. More recently, the biological properties of 1 , 2 , and related derivatives have been demonstrated experimentally, and their production both by cell cultures and chemical synthesis has been studied extensively.  相似文献   
732.
High enantioselectivity can be achieved when chiral oxazaborolidines are used as catalysts in the reduction of ketones by borane. In the transition state on the way to the complex chiral compounds, the two reactants are activated and held in close proximity by the catalyst, as shown below.  相似文献   
733.
734.
Reaction solvent was previously shown to influence the selectivity of Pd/PtBu3-catalyzed Suzuki–Miyaura cross-couplings of chloroaryl triflates. The role of solvents has been hypothesized to relate to their polarity, whereby polar solvents stabilize anionic transition states involving [Pd(PtBu3)(X)] (X = anionic ligand) and nonpolar solvents do not. However, here we report detailed studies that reveal a more complicated mechanistic picture. In particular, these results suggest that the selectivity change observed in certain solvents is primarily due to solvent coordination to palladium. Polar coordinating and polar noncoordinating solvents lead to dramatically different selectivity. In coordinating solvents, preferential reaction at triflate is likely catalyzed by Pd(PtBu3)(solv), whereas noncoordinating solvents lead to reaction at chloride through monoligated Pd(PtBu3). The role of solvent coordination is supported by stoichiometric oxidative addition experiments, density functional theory (DFT) calculations, and catalytic cross-coupling studies. Additional results suggest that anionic [Pd(PtBu3)(X)] is also relevant to triflate selectivity in certain scenarios, particularly when halide anions are available in high concentrations.

In the presence of the bulky monophosphine PtBu3, palladium usually prefers to react with Ar–Cl over Ar–OTf bonds. However, strongly coordinating solvents can bind to palladium, inducing a reversal of selectivity.

Oxidative addition is a key elementary step in diverse transformations catalyzed by transition metals.1 For instance, this step is common to traditional cross-coupling reactions, which are among the most widely used methods for small molecule synthesis. During the oxidative addition step of cross-coupling reactions, a low valent metal [usually Pd(0)] inserts into a C–X bond with concomitant oxidation of the metal by two electrons. The “X” group of the C–X bond is commonly a halogen or triflate. Despite a wealth of research into this step,2–5 uncertainties remain about its mechanistic nuances. The mechanistic details are especially pertinent to issues of selectivity that arise when substrates contain more than one potentially reactive C–X bond.6One of the best-studied examples of divergent selectivity at the oxidative addition step is the case of Pd-catalyzed Suzuki couplings of chloroaryl triflates. In 2000, Fu reported that a combination of Pd(0) and PtBu3 in tetrahydrofuran (THF) effects selective coupling of 1 with o-tolylB(OH)2via C–Cl cleavage, resulting in retention of the triflate substituent in the final product 2a (Scheme 1A).7 In contrast, the use of PCy3 (ref. 7) or most other phosphines8 provides complementary selectivity (product 2b) under similar conditions. The unique selectivity imparted by PtBu3 was later attributed to this ligand''s ability to promote a monoligated oxidative addition transition state on account of its bulkiness.5,8 Smaller ligands, on the other hand, favor bisligated palladium, which prefers to react at triflate. The relationship between palladium''s ligation state and chemoselectivity has been rationalized by Schoenebeck and Houk through a distortion/interaction analysis.5 In brief, the selectivity preference of PdL2 is dominated by a strong interaction between the electron-rich Pd and the more electrophilic site (C–OTf). On the other hand, PdL is less electron-rich and its selectivity preference mainly relates to minimizing unfavorable distortion energy by reacting at the more easily-distorted C–Cl bond.Open in a separate windowScheme 1Seminal reports on the effects of (A) ligands and (B) solvents on the selectivity of cross-coupling of a chloroaryl triflate.5,7,9Proutiere and Schoenebeck later discovered that replacing THF with dimethylformamide (DMF, Scheme 1B, entry 1) or acetonitrile caused a change in selectivity for the Pd/PtBu3 system.9,10 In these two polar solvents, preferential reaction at triflate was observed, and PtBu3 no longer displayed its unique chloride selectivity. The possibility of solvent coordination to Pd was considered, as bisligated Pd(PtBu3)(solv) would be expected to favor reaction at triflate. However, solvent coordination was ruled out on the basis of two intriguing studies. First, DFT calculations using the functional B3LYP suggested that solvent-coordinated transition states are prohibitively high in free energy (about 16 kcal mol−1 higher than the lowest-energy monoligated transition structure). Second, the same solvent effect was not observed in a Pd/PtBu3-catalyzed base-free Stille coupling in DMF (Scheme 1B, entry 2). Instead, the Stille coupling was reported to favor reaction at chloride despite the use of a polar solvent. This result appears inconsistent with the possibility that solvent coordination induces triflate-selectivity, as coordination of DMF to Pd should be possible in both the Stille and Suzuki conditions, if it happens at all. Instead, it was proposed that the key difference between the Suzuki and Stille conditions was the absence of coordinating anions in the latter (unlike traditional Suzuki couplings, Stille couplings do not necessarily require basic additives such as KF to promote transmetalation). Indeed, when KF or CsF was added to the Stille reaction in DMF, selectivity shifted to favor reaction at triflate (Scheme 1B, entry 3), thereby displaying the same behavior as the Suzuki coupling in this solvent. On the basis of this and the DFT studies, it was proposed that polar solvents induce a switch in chemoselectivity if coordinating anions like fluoride are available by stabilizing anionic bisligated transition structures (Scheme 1B, right).However, our recent extended solvent effect studies produced confounding results.11 In a Pd/PtBu3-catalyzed Suzuki cross-coupling of chloroaryl triflate 1, we observed no correlation between solvent polarity and chemoselectivity (Scheme 2). Although some polar solvents such as MeCN, DMF, and dimethylsulfoxide (DMSO) favor reaction at triflate, a number of other polar solvents provide the same results as nonpolar solvents by favoring reaction at chloride. For example, cross-coupling primarily takes place through C–Cl cleavage when the reaction is conducted in highly polar solvents like methanol, water, acetone, and propylene carbonate. In fact, the only solvents that promote reaction at triflate are ones that are commonly thought of as “coordinating” in the context of late transition metal chemistry.12 These are solvents containing nitrogen, sulfur, or electron-rich oxygen lone pairs (nitriles, DMSO, and amides). The observed solvent effects were upheld for a variety of chloroaryl triflates and aryl boronic acids.11Open in a separate windowScheme 2Expanded solvent effect studies in the Pd/PtBu3-catalyzed Suzuki coupling.11We have sought to reconcile these observations with the earlier evidence9 against solvent coordination. Herein we report detailed mechanistic studies indicating that coordinating solvents alone are sufficient to induce the observed selectivity switch. In solvents like DMF and MeCN, stoichiometric oxidative addition is favored at C–OTf even in the absence of anionic additives. The apparent contradiction between our observations and the previously-reported DFT calculations and base-free Stille couplings is reconciled by a reevaluation of those studies. In particular, when dispersion is considered in DFT calculations, neutral solvent-coordinated transition structures involving Pd(PtBu3)(solv) become energetically feasible. Furthermore, we find that the selectivity analysis in the Stille couplings is convoluted by low yields, the formation of side products, and temperature effects. When these factors are disentangled, the Stille coupling in DMF displays selectivity similar to the Suzuki coupling in the same coordinating solvent. In light of these new results, anionic bisligated [Pd(PtBu3)(X)] does not appear to be the dominant active catalyst in nonpolar or polar solvents unless special measures are taken to increase the concentration of free halide, such as adding tetraalkylammonium halide salts or crown ethers.  相似文献   
735.
736.
Evolution of the commutation concept has lead to the proposal and development of different generations of flow analyzers. Since the inception of the air-segmented flow systems till the availability of modern flow injection, sequential-injection and other flow-based analytical systems, a noteworthy improvement of the commutating devices has been noted.

Multi-functional manifold is described as a polyvalent approach for methodology implementation in a flow analyzer. It permits the investigation of mixing conditions under different flow patterns (unsegmented, segmented, monosegmented) with optional exploitation of the stopped-flow approach. For this purpose, spectrophotometric or turbidimetric measurements eventually affected by Schlieren noise were considered. Potentialities and limitations of the manifold are discussed in relation with methods based on relatively fast or slow chemical reactions. As applications, phosphate and chloride determinations in plant digests and natural waters were selected.

The manifold is characterized by high versatility and may work in connection with different flow configurations. Development will certainly lead to simple, versatile and miniaturized analyzers, able to run samples in a personalized fashion. In addition, random reagent selection, full automation, expansion of the analytical application range and increasing potentialities of the already existing methodologies are devised.  相似文献   

737.
In this paper a mathematical scheme for the analysis of quantum event structures is being proposed based on category theoretical methods. It is shown that there exists an adjunctive correspondence between Boolean presheaves of event algebras and quantum event algebras. The adjunction permits a characterization of quantum event structures as Boolean manifolds of event structures.  相似文献   
738.
Size effects in strength and fracture energy of heterogeneous materials is considered within a context of scale-dependent constitutive relations. Using tools of wavelet analysis, and considering the failure state of a one-dimensional solid, constitutive relations which include scale as a parameter are derived from a ‘background’ gradient formulation. In the resulting theory, scale is not a fixed quantity independent of deformation, but rather directly dependent on the global deformation field. It is shown that strength or peak nominal stress (maximum point at the engineering stress–strain diagram) decreases with specimen size while toughness or total work to fracture per nominal area (area under the curve in the engineering stress–strain diagram integrated along the length of the considered one-dimensional specimen) increases. This behavior is in agreement with relevant experimental findings on heterogeneous materials where the overall mechanical response is determined by variations in local material properties. The scale-dependent constitutive relations are calibrated from experimental data on concrete specimens.  相似文献   
739.
740.
Second degree normalized implicit conjugate gradient methods for the numerical solution of self-adjoint elliptic partial differential equations are developed. A proposal for the selection of certain values of the iteration parameters ?i, γi involved in solving two and three-dimensional elliptic boundary-value problems leading to substantial savings in computational work is presented. Experimental results for model problems are given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号