首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   6篇
化学   129篇
力学   9篇
数学   38篇
物理学   80篇
  2022年   2篇
  2021年   6篇
  2020年   6篇
  2019年   2篇
  2016年   8篇
  2015年   6篇
  2014年   5篇
  2013年   17篇
  2012年   10篇
  2011年   13篇
  2010年   9篇
  2009年   10篇
  2008年   16篇
  2007年   12篇
  2006年   12篇
  2005年   6篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  1996年   19篇
  1995年   17篇
  1994年   4篇
  1992年   3篇
  1991年   1篇
  1990年   11篇
  1989年   6篇
  1988年   3篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1939年   2篇
  1937年   1篇
  1914年   1篇
  1913年   1篇
  1912年   1篇
  1911年   2篇
  1910年   1篇
  1909年   1篇
  1908年   2篇
  1893年   1篇
  1891年   1篇
  1889年   1篇
排序方式: 共有256条查询结果,搜索用时 19 毫秒
91.
A key feature of biomineralization processes is that they take place within confined volumes, in which the local environment can have significant effects on mineral formation. Herein, we investigate the influence of confinement on the formation mechanism and structure of calcium phosphate (CaP). This is of particular relevance to the formation of dentine and bone, structures of which are based on highly mineralized collagen fibrils. CaP was precipitated within 25–300 nm diameter, cylindrical pores of track etched and anodised alumina membranes under physiological conditions, in which this system enables systematic study of the effects of the pore size in the absence of a structural match between the matrix and the growing crystals. Our results show that the main products were polycrystalline hydroxapatite (HAP) rods, together with some single crystal octacalcium phosphate (OCP) rods. Notably, we demonstrate that these were generated though an intermediate amorphous calcium phosphate (ACP) phase, and that ACP is significantly stabilised in confinement. This effect may have significance to the mineralization of bone, which can occur through a transient ACP phase. We also show that orientation of the HAP comparable, or even superior to that seen in bone can be achieved through confinement effects alone. Although this simple experimental system cannot be considered, a direct mimic of the in vivo formation of ultrathin HAP platelets within collagen fibrils, our results show that the effects of physical confinement should not be neglected when considering the mechanisms of formation of structures, such as bones and teeth.  相似文献   
92.
Bioassays represent promising complementary techniques to conventional analytical approaches used in doping analysis to detect illicit drugs like anabolic-androgenic steroids (AAS). The fact that all AAS share a common mechanism of action via the human androgen receptor (hAR) enables the use of bioassays, relying on the activation of hAR as antidoping screening tools. Previously, we developed a dual-color bioreporter based on yeast cells engineered to express hAR and androgen response elements driving the expression of the bioluminescent (BL) reporter protein Photinus pyralis luciferase. A second reporter protein, the red-emitting luciferase PpyRE8, was introduced in the bioreporter as internal viability control. Here, we report the first forensic application of a straightforward, accurate, and cost-effective bioassay, relying on spectral resolution of the two BL signals, in 96-microwell format. The bioreporter responds to dihydrotestosterone as reference androgen in a concentration-dependent manner from 0.08 to 1,000 nM with intra- and inter-assay variation coefficients of 11.4 % and 13.1 %, respectively. We also demonstrated the suitability of this dual-color bioreporter to assess (anti)-androgenic activity of pure AAS, mixtures of AAS, and other illicit drugs provided by the Scientific Police. Significant anti-androgenic activity was observed in samples labeled as marijuana and hashish, containing Δ9-tetrahydrocannabinol as major constituent.
Figure
Evaluation of (anti)-androgenic activity of seized drugs with the dual-color bioluminescent bioreporter  相似文献   
93.
Chighizola  C. R.  D’Elia  C. R.  Weber  D.  Kirsch  B.  Aurich  J. C.  Linke  B. S.  Hill  M. R. 《Experimental Mechanics》2021,61(8):1309-1322
Background

While near surface residual stress (NSRS) from milling is a driver for distortion in aluminum parts there are few studies that directly compare available techniques for NSRS measurement.

Objective

We report application and assessment of four different techniques for evaluating residual stress versus depth in milled aluminum parts.

Methods

The four techniques are: hole-drilling, slotting, cos(α) x-ray diffraction (XRD), and sin2(ψ) XRD, all including incremental material removal to produce a stress versus depth profile. The milled aluminum parts are cut from stress-relieved plate, AA7050-T7451, with a range of table and tool speeds used to mill a large flat surface in several samples. NSRS measurements are made at specified locations on each sample.

Results

Resulting data show that NSRS from three techniques are in general agreement: hole-drilling, slotting, and sin2(ψ) XRD. At shallow depths (<?0.03 mm), sin2(ψ) XRD data have the best repeatability (<?15 MPa), but at larger depths (>?0.04 mm) hole-drilling and slotting have the best repeatability (<?10 MPa). NSRS data from cos(α) XRD differ from data provided by other techniques and the data are less repeatable. NSRS data for different milling parameters show that the depth of NSRS increases with feed per tooth and is unaffected by cutting speed.

Conclusion

Hole-drilling, slotting, and sin2(ψ) XRD provided comparable results when assessing milling-induced near surface residual stress in aluminum. Combining a simple distortion test, comprising removal of a 1 mm thick wafer at the milled surface, with a companion stress analysis showed that NSRS data from hole-drilling are most consistent with milling-induced distortion.

  相似文献   
94.
This work investigates the physicochemical alterations of water perturbed by prolonged contact with the hydrophilic polymer Nafion, referred to as iteratively nafionized water (INW). The parameters measured are: electrical conductivity, χ μS cm?1, heat of mixing with basic sodium hydroxide (NaOH) solutions, ΔQ NaOH mix  J kg?1, and pH. The results indicate that supramolecular aggregates of water molecules form after prolonged contact with a Nafion surface. Analytical determination by ion chromatography allows us to exclude the role of contaminants. This suggests that water may possess an exceptional self-organization capability triggered by the contact with a hydrophilic surface. Conductometric, pH-metric, and calorimetric titrations of INW were performed by the addition of NaOH solutions to determine the concentration of the aqueous nanostructures, via conductometric and pH-metric titration with NaOH solutions. Thermodynamic parameters were determined via calorimetric titration, for the process of formation of complexes between the nanostructures and the base used.  相似文献   
95.
Chemical inducers of dimerization (CIDs) have been developed to orchestrate protein dimerization and translocation. Here we present a novel photocleavable HaloTag‐ and SNAP‐tag‐reactive CID (MeNV‐HaXS) with excellent selectivity and intracellular reactivity. Excitation at 360 nm cleaves the methyl‐6‐nitroveratryl core of MeNV‐HaXS. MeNV‐HaXS covalently links HaloTag‐ and SNAP‐tag fusion proteins, and enables targeting of selected membranes and intracellular organelles. MeNV‐HaXS‐mediated translocation has been validated for plasma membrane, late endosomes, lysosomes, Golgi, mitochondria, and the actin cytoskeleton. Photocleavage of MeNV‐HaXS liberates target proteins and provides access to optical manipulation of protein relocation with high spatiotemporal and subcellular precision. MeNV‐HaXS supports kinetic studies of protein dynamics and the manipulation of subcellular enzyme activities, which is exemplified for Golgi‐targeted cargo and the assessment of nuclear import kinetics.  相似文献   
96.
Kuzniak  Alain  Tanguay  Denis  Elia  Iliada 《ZDM》2016,48(6):721-737
ZDM – Mathematics Education - The theoretical and methodological model of Mathematical Working Space (MWS) is introduced in this paper. For over 10&nbsp;years, the model has been the...  相似文献   
97.
It is widely known that macromolecules, such as proteins, can control the nucleation and growth of inorganic solids in biomineralizing organisms. However, what is not known are the complementary molecular interactions, organization, and rearrangements that occur when proteins interact with inorganic solids during the formation of biominerals. The organic-mineral interface (OMI) is expected to be the site for these phenomena, and is therefore extraordinarily interesting to investigate. In this report, we employ X-ray absorption near edge (XANES) spectromicroscopy to investigate the electronic structure of both calcium carbonate mineral crystals and polypeptides, and detect changing bonds at the OMI during crystal growth in the presence of polypeptides. We acquired XANES spectra from calcium carbonate crystals grown in the presence of three mollusk nacre-associated polypeptides (AP7N, AP24N, n16N) and in the presence of a sea urchin spicule matrix protein, LSM34. All these model biominerals gave similar results, including the disruption of CO bonds in calcite and enhancement of the peaks associated with C-H bonds and C-O bonds in peptides, indicating ordering of the amino acid side chains in the mineral-associated polypeptides and carboxylate binding. This is the first evidence of the mutual effect of calcite on peptide chain and peptide chain on calcite during biomineralization. We also show that these changes do not occur when Asp and Glu are replaced in the n16N sequence with Asn and Gln, respectively, demonstrating that carboxyl groups in Asp and Glu do participate in polypeptide-mineral molecular associations.  相似文献   
98.
A high-resolution ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC/TOFMS) method using in-source collision-induced dissociation (CID) was developed for globally profiling oxylipin-containing galactolipids in Arabidopsis wounded leaves. MS and pseudo-MS/MS spectra were obtained during a single analytical run by switching a lens of the TOFMS transfer optics from low to high voltage. Numerous known galactolipids were observed, and four novel mono- or di-galactosyl monoacylglycerides (MGMGs or DGMGs) containing oxophytodienoic acid (OPDA) or dinor-oxophytodienoic acid (dn-OPDA), esterified respectively at the sn1 and the sn2 positions, were identified. Rapid microisolation of the galactolipids followed by alkaline and enzymatic hydrolyses enabled the release of the esterified oxylipins, which allowed for the unambiguous characterization of the oxylipin-containing monoacylglycerides. Their strong induction in response to wounding indicates that these compounds are probably lysogalactolipids formed from galactosyldiglycerides in the injured tissues.  相似文献   
99.
An extensive study has been carried out on extremely diluted aqueous solutions (EDS). These solutions revealed a really intriguing physico-chemical behaviour, characterized by multiple independent variables. Because of their behaviour, EDS can be described as far-from-equilibrium systems, capable of self-organization as a consequence of little perturbations. In this paper we investigate the stability of the calorimetric behaviour of EDS with a high ionic force, due to the presence of the sodium chloride electrolyte. We measured the excess heats of mixing of EDS with basic solutions, both with and without a high concentration of NaCl, and compared the results. In particular, we explored these concentrations: 0.5 and 1Mmol kg−1). The analysis of the experimental results shows that the calorimetric response of the EDS is stable when they are in a concentrated solution of NaCl. That is of great relevance for the eventual pharmacological action of these solutions, since it involves the interaction with fluids of complex chemical composition and high concentration.  相似文献   
100.
The complex fac-[Ru(NO)Cl2(kappa(3)N(4),N(8),N(11)(1-carboxypropyl)cyclam)]Cl.H2O (1-carboxypropyl)cyclam=3-(1,4,8,11-tetraazacyclotetradecan-1-yl)propionic acid) was prepared in a one pot reaction by mixing equimolar amounts of RuNOCl 3 and (1-carboxypropyl)cyclam and was characterized by X-ray crystallography, electrospray ionization tandem mass spectrometry (ESI-MS/MS), elemental analysis, NMR, and electronic and vibrational (IR) spectroscopies. fac-[Ru(NO)Cl 2(kappa(3)N(4),N(8),N(11)(1-carboxypropyl)cyclam)]Cl.H2O crystallizes in the triclinic, space group P1, No. 2, with unit cell parameters of a=8.501(1) A, b=9.157(1) A, c=14.200(1) A, alpha=72.564(5) degrees , beta=82.512(5) degrees , gamma=80.308(5) degrees , and Z=2. The Ru-N interatomic distance and bond angle in the [Ru-NO] unit are 1.739(2) A and 167.7(2) degrees , respectively. ESI-MS/MS shows characteristic dissociation chemistry that initiates by HCl or NO loss. The IR spectrum displays a nu(NO) at 1881 cm(-1) indicating a nitrosonium character. The electronic spectrum shows absorptions bands at 264 nm (log epsilon=3.27), 404 nm (log epsilon=2.53), and 532 nm (log epsilon=1.88). (1)H and (13)C NMR are in agreement with the proposed molecular structure, which shows a very singular architecture where the cyclam ring N (with the carboxypropyl pendant arm) is not coordinated to the ruthenium resulting in a kappa(3) instead of the expected kappa(4) denticity.  相似文献   
[首页] « 上一页 [5] [6] [7] [8] [9] 10 [11] [12] [13] [14] [15] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号