Herein, Ni(II) immobilized on modified mesoporous silica MCM-41 was designed and synthesized via a facile sequential strategy. The structure of the catalyst was characterized by X-ray diffraction. The thermal property of the as-synthesized materials was studied using thermogravimetric-differential thermal analysis. The average particles size and morphology of MCM-41@XA@Ni(II) were investigated using scanning electron microscopy and transmission electron microscopy. This nanostructure catalyst was effective for the selective oxidation of sulfides and acetylation of alcohols in solvent-free conditions. The easy recyclability of the catalyst and their complete chemoselectivity toward the sulfur group of substrates in the oxidation of sulfides are important “green” attributes of this catalyst. 相似文献
In this study, magnetic multimodal nanoparticles with potential applications in magnetic- and nuclear-medicine imaging, magnetic resonance imaging, hyperthermia, and theranostic (therapeutic and diagnostic), applications were prepared by coating iron oxide nanoparticles with silica (core–shell), functionalizing with aminopropyltriethoxy silane and coupling with diethylenetriamine pentaacetic acid ligand (DTPA). Radiolabeling of core–shell–DTPA particles with 68Ga radiometal was carried out through chelation of 68Ga(III) ions by DTPA and was used for positron emission tomography. The biodistribution of the 68Ga-radiolabeled magnetic nanoparticles compared to free 68Ga(III) was checked in normal Balb/c mice up to 2 h. 相似文献
Facile and smart method for the modification of inorganic fibers has been developed. The polyaniline was synthesized on basalt fiber surface presenting an organic polymer shell to the inorganic fibers. The modified basalt fibers were dispersed in rubber-producing well-dispersed rubber composites. Various mass loadings of modified basalt fibers were dispersed and optimized. The effect of radiation on the properties of developed rubber composites was investigated by exposure to different gamma radiation doses. The flammability, thermal and mechanical properties were studied. The flammability of developed composites was improved achieving 62 and 16% reduction in the peak heat release rate compared to blank rubber and unmodified basalt fiber-based rubber composite, respectively. This is in addition to significant reduction in emission of CO and CO2 gases by 65 and 58%, respectively. Also, the tensile strength property was enhanced by 38 and 53% compared to blank and unmodified basalt composite, respectively. The role of polyaniline layer on inorganic fiber surface and their effect on the properties of the produced composites was studied. The organic polymer shell achieved good compatibility and interfacial adhesion of basalt fibers with rubber matrix and radiation protection effect for the developed composites. 相似文献
A one‐pot synthesis of functionalized benzo thiazine derivatives via a Cu‐catalyzed, multicomponent reaction of isocyanides, aniline, and heterocumulenes in acetonitrile at room temperature was developed. Transition metal‐catalyzed activation of C‐H bonds under mild copper‐catalytic reaction conditions, using simple and available starting materials, also obtaining a pure product with high yield without applying column chromatography are the major advantages of the applied method among the other ones used for this purpose. The structures are confirmed spectroscopically (1H‐ and 13C‐NMR, IR, and EI‐MS) and through elemental analyses. 相似文献
Commonly, acquired resistances to anticancer drug are mediated by overexpression of a membrane-associated protein that encode via multi-drug resistance gene-1 (MDR1). Herein, the mRNA-cleaving DNAzyme that targets the mRNA of MDR1 gene in doxorubicin-resistant breast cancer cell line (MCF-7/DR) loaded on the chitosan β-cyclodextrin complexes was used as a tropical agent. Chitosan/β-cyclodextrin complexes were used to deliver DNAzymes into cancer cells. Determination of the physicochemical characteristics of the particles was done by photon correlation spectroscopy and scanning electron microscopy. The encapsulation efficiency of the complexes was tested by using gel retardation assay. Positively charged nanoparticles interacted with DNAzyme that could perform as an efficient DNAzyme transfection system. The rationale usage of this platform is to sensitize MCF-7/DR to doxorubicin by downregulating the drug-resistance gene MDR1. Results demonstrated a downregulation of MDR1 mRNAs in MCF-7/DR/DNZ by real-time PCR, compared to the MCF-7/DR as control. WST1 assay showed the 22-fold decrease in drug resistance on treated cells 24 h after transfection. Results showed the intracellular accumulation of Rh123 increased in the treated cells with DNAzyme. Results suggested a potential platform in association with chemotherapy drug for cancer therapy and indicated extremely efficient at delivery of DNAzyme in restoring chemosensitivity.
In this work, the surface of mesoporous MCM-41 was modified with guanidine, and then, Nickel particles have become immobilized on its surface (Ni-guanidine@MCM-41NPs). This heterogeneous catalyst has been identified by various techniques including: low-angle X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma, thermal gravimetric analysis and N2 adsorption–desorption measurement isotherms, and its catalytic application was studied in the synthesis of 4,4ʹ-(arylmethylene)-bis-(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives and symmetric di-aryl sulfides. The prepared organometallic complex could be isolated, post-reaction, by simple filtration for several consecutive cycles without a notable change in its catalytic activity.
Magnetic nanoparticles with monodisperse shape and size were prepared by a simple method and covered by silica. The prepared core-shell Fe3O4@silica nanoparticles were functionalized by amino groups and characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer-Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. The synthesized nanoparticles were employed as an adsorbent for removal of Hg2+ from aqueous solutions, and the adsorption phenomena were studied from both equilibrium and kinetic point of views. The adsorption equilibriums were analyzed using different isotherm models and correlation coefficients were determined for each isotherm. The experimental data were fitted to the Langmuir–Freundlich isotherm better than other isotherms. The adsorption kinetics was tested for the pseudo-first-order, pseudo-second-order and Elovich kinetic models at different initial concentrations of the adsorbate. The pseudo-second-order kinetic model describes the kinetics of the adsorption process for amino functionalized adsorbents. The maximum adsorption occurred at pH 5.7 and the adsorption capacity for Fe3O4@silica-NH2 toward Hg2+ was as high as 126.7 mg/g which was near four times more than unmodified silica adsorbent. 相似文献
In the current work, the effect of aniline concentration on the polymerization process and supercapacitive behavior of graphene oxide/multiwalled carbon nanotubes/polyaniline (GMP) nanocomposites were studied. Based on the obtained results, GMP nanocomposite with 0.5 M aniline (GMP5) was selected as the optimum concentration in terms of high current density and high specific capacitance. Nafion-based ionic polymer-free metal composite (IPFMC) supercapacitor was fabricated for the GMP5 nanocomposite. Solid-state symmetric supercapacitor was made after spraying of GMP5 in. on both sides of Nafion membrane. The electrochemical properties were investigated by cyclic voltammetry (CV), galvanostatic charge–discharge (CD), and electrochemical impedance spectroscopy (EIS) techniques in 0.5 M Na2SO4.The specific capacitance of 383.25 F g?1 (326 mF cm?2) and 527.5 F g?1 (42 mF cm?2) was obtained for the GMP5 in solid-state supercapacitor and three-electrode cell at a scan rate of 10 mV s?1, respectively. The maximum energy and power densities of 53.64 and 1777.4 W kg?1 were obtained for the IPFMC-based supercapacitor.
Research on Chemical Intermediates - The present work reports the synthesis of a Pt-modified NiO–Al2O3 nanocomposite derived from graphene-supported layered double hydroxide (Pt–NiO/G)... 相似文献
Summary. The oxidation of arenes and sulfides by potassium permanganate was accomplished in good yields under solvent free and heterogeneous
conditions when manganese(II) sulfate is used as a solid support. After extraction of the organic products, the inorganic
products can be reoxidized to permanganate. This result is important because it provides an approach to oxidation reactions
that is, in theory, infinitely sustainable. 相似文献