The electrochemical reduction of four arylidene substituted derivatives of dibenz-[b,e]-thiepin-5,5-dioxide-11- one has been
studied by cyclic voltammetry on platinum (Pt) electrode in aprotic media (DMSO), coupled with spectral EPR techniques. From
the analysis of cyclic voltammetry experiments, aided by digital simulations using DigiSim software, the kinetic and thermodynamic
parameters were evaluated for each system. The electrochemical behaviour is strongly directed by the nature of the arylidene
substituents bound to the central heterocycle. The electrochemical investigation and solvent dependent semiempirical modeling
using the PM3 hamiltonian in the frame of AMPAC program package allowed a rationalisation of experimental data regarding the
electrochemical reduction and the reactivity of the intermediate species involved.
相似文献
We have studied, by scanning electron and atomic force (AFM) microscopies, how each step involved in the building process of massive carbon-based sol–gel enzymatic biosensors changes and determines the resulting surface morphology and nano-mechanical properties. The biosensor, selected as a model, is developed by the entrapment of glucose oxidase (GOx), a redox mediator and a material conferring conductivity (graphite powder, C) into a polymeric tridimensional network generated by sol–gel technology using tetraethoxysilane (TEOS) as precursor. The smooth TEOS morphology is formed by an irregular nanoporous network, which is very adequate for enzyme encapsulation. Upon addition of carbon powder to the system (TEOS/C), the surface morphology changes but it is still rather irregular since carbon powder micro-grains are found scattered on it. This morphology results in a rather rough surface at the micro- scale whereas at the nano- scale both atomically flat graphitic and nanoporous TEOS domains are found. In contrast, the final biosensing device surface is quite homogeneous and composed by flat platelets separated by deep crevices. On top of most of these platelets there is a soft, as assessed by AFM force indentation experiments, layer of globular structures whose dimensions are compatible with GOx molecules. The final device surface architecture results to be open and accessible both at the micro and nano scales, which turns it as adequate to enhance both the accessibility of the analytes to entrapped proteins and the mass-transfer rates. Finally, in order to show the applicability of the studied biosensor, its response was evaluated towards varying glucose concentrations, displaying a clear electrocatalytic activity. 相似文献
Spectroelectrochemical studies on the reactivity of butanol isomers on Pt electrodes in perchloric acid medium led to the observation of structural effects that result from the different arrangements of atoms in the organic molecules. The use of differential electrochemical mass spectrometry (DEMS) to detect volatile products showed that all four isomers react on the electrode, though different product yields were observed for each compound. In spite of the differences in the electrochemical behaviour of the butanol isomers, a series of general processes accounts for the results obtained. The formation of strongly adsorbed residues by a dehydration process leading to the formation of a C=C bond was proposed for all isomers. Electroreduction of the adsorbates produces C(4) and C(3) alkanes, and the latter reveal the existence of a fragmentation process. The C(4) hydrocarbons can be formed by hydrogenation of these residues and by hydrogenolysis of alcohol molecules in the bulk solution which react at the electrode with adsorbed hydrogen. On the other hand, CO(2) is formed during electrooxidation of the adsorbed species. Partial-oxidation products containing a carbonyl group were detected from 0.2 M solutions of 1-butanol, isobutyl alcohol and sec-butyl alcohol. The tertiary alcohol tert-butyl alcohol only reacts in its adsorbed state. 相似文献
Metal-free tetraazachlorin (TAC), -bacteriochlorin (TAB), and -isobacteriochlorin (TAiB) were characterized by electronic absorption, magnetic circular dichroism (MCD), fluorescence, and time-resolved ESR (TR-ESR) spectroscopy, and by cyclic voltammetry. The results are compared with those of metal-free tetraazaporphyrin (TAP). The potential difference DeltaE between the first oxidation and reduction couples decreases in the order TAP>TAiB>TAC>TAB. The splitting of both the Q and Soret bands decreases in the order TAB>TAC>TAP>TAiB. Corresponding to the split absorption bands, MCD spectra show a minus-to-plus pattern with increasing energy in both the Q and Soret regions, which suggests that the energy difference between the HOMO and second HOMO is larger than that between the LUMO and second LUMO. These spectroscopic properties and redox potentials were reproduced by molecular orbital calculations using the ZINDO/S Hamiltonian. The fluorescence quantum yields of the reduced species are much smaller than that of TAP. The zero-field splitting (ZFS) parameters D and E of the excited triplet states (T1) of these species decrease and increase, respectively, on going from TAP to TAC and further to TAB. The D and E values of TAiB are larger than those of the other species. The results are supported by the absence of interaction between the spin over reduced pyrrole moieties of the HOMO and over the LUMO, and by calculations of ZFS under a half-point-charge approximation. 相似文献
The crystal structure of the title compound, [CoCl2(C6H12N2S)2], consists of monomer units of a CoII atom coordinated to two 1‐propylimidazolidine‐2‐thione ligands and to two chloride ions. The heterocyclic thione ligand is monodentate and coordinated to the metal through the thione S atom. The environment around the CoII atom is a slightly distorted tetrahedron. The Co—S bond lengths are 2.341 (2) and 2.330 (2) Å, and the Co—Cl bond lengths are 2.234 (2) and 2.238 (2) Å. The most important point of distortion is the S—Co—S bond angle of only 97.83 (8)°. Intramolecular classical hydrogen bonds are found between the chloride ions and the N—H groups. Additionally, intra‐ and intermolecular non‐classical hydrogen bonds are found. 相似文献
Chloroprene (=2‐chlorobuta‐1,3‐diene; 4b ) and electron‐rich dienes such as 2‐methoxy‐( 4c ), 2‐acetoxy‐( 4d ), and 2‐(phenylseleno)buta‐1,3‐diene ( 4e ) refused to equilibrate with the corresponding sultines 5 or 6 between −80 and −10° in the presence of excess SO2 and an acidic promoter. Isoprene ( 4a ) and 2‐(triethylsilyl)‐( 4f ), 2‐phenyl‐( 4g ), and 2‐(2‐naphthyl)buta‐1,3‐diene ( 4i ) underwent the hetero‐Diels‐Alder additions with SO2 at low temperature. In contrast, 2‐(1‐naphthyl)buta‐1,2‐diene ( 4h ) did not. With dienes 4a, 4g , and 4i , the hetero‐Diels‐Alder additions with SO2 gave the corresponding 4‐substituted sultine 5 with high regioselectivity. In the case of 4g +SO2⇄ 5g , the energy barrier for isomerization of 5g to 5‐phenylsultine ( 6g ) was similar to that of the cheletropic addition of 4g to give 3‐phenylsulfolene ( 7g ). The hetero‐Diels‐Alder addition of 4f gave a 1 : 4 mixture of the 4‐(triethylsilyl)sultine ( 5f ) and 5‐(triethylsilyl)sultine ( 6f ). The preparation of the two new dienes 4h and 4i is reported. 相似文献
1,2,3,4‐Tetrahydro‐1,2‐dimethylidenenaphthalene 11 has been derived in three steps from tetralone. In the condensed state and at −80°, it undergoes a highly chemo‐ and regioselective cyclodimerization to give 3,3′,4,4′‐tetrahydro‐2‐methylidenespiro[naphthalene‐1(2H),2′(1′H)‐phenanthrene] ( 14 ), the structure of which has been established by single‐crystal X‐ray‐diffraction analysis. Dimer 14 undergoes cycloreversion to diene 11 under flash‐pyrolysis conditions. The reaction of diene 11 with SO2 occurs without acid promoter at −80° and gives a mixture of (±)‐1,4,5,6‐tetrahydronaphth[1,2‐d][1,2]oxathiin 2‐oxide ( 23 ; a single sultine), 1,3,4,5‐tetrahydronaphtho[1,2‐c]thiophene 2,2‐dioxide ( 25 ), and dimer 14 . The high reactivity of diene 1 in its Diels‐Alder cyclodimerization and its highly regioselective hetero‐Diels‐Alder addition with SO2 can be interpreted in terms of the formation of relatively stable diradical intermediates or by concerted processes with transition states that can be represented as diradicaloids. 相似文献
The incorporation of noble gas atoms, in particular neon, into the pores of network structures is very challenging due to the weak interactions they experience with the network solid. Using high‐pressure single‐crystal X‐ray diffraction, we demonstrate that neon atoms enter into the extended network of ammonium metal formates, thus forming compounds Nex[NH4][M(HCOO)3]. This phenomenon modifies the compressional and structural behaviours of the ammonium metal formates under pressure. The neon atoms can be clearly localised within the centre of [M(HCOO)3]5 cages and the total saturation of this site is achieved after ~1.5 GPa. We find that by using argon as the pressure‐transmitting medium, the inclusion inside [NH4][M(HCOO)3] is inhibited due to the larger size of the argon. This study illustrates the size selectivity of [NH4][M(HCOO)3] compounds between neon and argon insertion under pressure, and the effect of inclusion on the high‐pressure behaviour of neon‐bearing ammonium metal formates. 相似文献
Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin–drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αβ-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities.
This study reports on the use of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay, combined with glycomicelles, as a method for detecting specific interactions between water-soluble proteins and glycolipids (GLs) in aqueous solution. The B subunit homopentamers of cholera toxin (CTB5) and Shiga toxin type 1 B (Stx1B5) and the gangliosides GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2 served as model systems for this study. The CTB5 exhibits broad specificity for gangliosides and binds to GM1, GM2, GM3, GD1a, GD1b, and GT1b; Stx1B5 does not recognize gangliosides. The CaR-ESI-MS assay was used to analyze solutions of CTB5 or Stx1B5 and individual gangliosides (GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2) or mixtures thereof. The high affinity interaction of CTB5 with GM1 was successfully detected. However, the apparent affinity, as determined from the mass spectra, is significantly lower than that of the corresponding pentasaccharide or when GM1 is presented in model membranes such as nanodiscs. Interactions between CTB5 and the low affinity gangliosides GD1a, GD1b, and GT1b, as well as GD2, which served as a negative control, were detected; no binding of CTB5 to GM2 or GM3 was observed. The CaR-ESI-MS results obtained for Stx1B5 reveal that nonspecific protein-ganglioside binding can occur during the ESI process, although the extent of binding varies between gangliosides. Consequently, interactions detected for CTB5 with GD1a, GD1b, and GT1b are likely nonspecific in origin. Taken together, these results reveal that the CaR-ESI-MS/glycomicelle approach for detecting protein–GL interactions is prone to false positives and false negatives and must be used with caution.