首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   15篇
  国内免费   1篇
化学   322篇
晶体学   6篇
力学   8篇
数学   21篇
物理学   60篇
  2023年   2篇
  2022年   6篇
  2021年   11篇
  2020年   12篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2016年   14篇
  2015年   9篇
  2014年   8篇
  2013年   25篇
  2012年   25篇
  2011年   33篇
  2010年   14篇
  2009年   19篇
  2008年   24篇
  2007年   34篇
  2006年   15篇
  2005年   24篇
  2004年   24篇
  2003年   11篇
  2002年   8篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   9篇
  1997年   6篇
  1996年   2篇
  1994年   3篇
  1992年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   3篇
  1975年   7篇
  1974年   3篇
  1973年   4篇
  1970年   1篇
  1958年   1篇
  1954年   1篇
排序方式: 共有417条查询结果,搜索用时 31 毫秒
71.
Fly agaric accumulate vanadium in the form of amavadin, whose structure has been elucidated (see picture for the crystal structure). Amavadin contains one VIV center coordinated to two (S,S)-hidpa3− ligands (H3hidpa=2,2′-(hydroxyimino)dipropionic acid) through one η2-NO group and two unidentate carboxylato groups from each ligand. The arrangement of the two η2-NO groups leads to a chiral vanadium center, which has been characterized in both the Λ and Δ forms. The carboxylato groups of the amavadin anions bind cations, for example, Ca2+ ions, and/or become involved in hydrogen bonding.  相似文献   
72.
Thermal analysis of vitamin PP Niacin and niacinamide   总被引:1,自引:0,他引:1  
Vitamin PP includes two vitamers, niacin and niacinamide which are essential for energy production. Vitamins are sensitive and losses can occur during shelf life and heating processes. Thermal analysis can provide information about thermal behavior of each vitamer relating them with time and/or temperature exposure. The vitamers thermal behavior were studied by TG/DTG and DSC under air and nitrogen atmosphere and the results showed that niacin is more stable than the niacinamide and the decomposition happens by volatilization at 238 °C while niacinamide melts at 129 °C and volatilize at 254 °C when there is the total mass loss in the TG/DTG curves.  相似文献   
73.
In early pharmaceutical product development, an investigational drug candidate is typically dosed to various species for toxicological and pharmacokinetic studies. Most of these studies require multiple analytical methods that have to be validated with good laboratory practice (GLP) prior to the application in regulated studies. Usually, these analytical methods are developed in either a serial or parallel approach. For either approach, the development of multiple analytical methods takes tremendous work from scientists and instruments, and thus is not cost-effective. In this respect, a new strategy has been developed for simultaneous GLP method development using liquid chromatographic separation and tandem mass spectrometric detection. This high-throughput approach allows system suitability, carryover, calibration curve, accuracy, precision, matrix effect and selectivity to be evaluated in one 96-well plate. The strategy has been successfully implemented for multiple investigational drug candidates at Abbott Laboratories. The methods developed with this strategy are accurate, precise, selective, robust and matrix-independent. As an example, ABT-279 was used to demonstrate the feasibility of this strategy.  相似文献   
74.
Accelerator mass spectrometry (AMS) is currently one of the most sensitive methods available for the trace detection of DNA adducts and is particularly valuable for measuring adducts in humans or animal models. However, the standard approach requires administration of a radiolabeled compound. As an alternative, we have developed a preliminary 14C-postlabeling assay for detection of the highly mutagenic O6-methyldeoxyguanosine (O6-MedG), by AMS. Procedures were developed for derivatising O6-MedG using unlabeled acetic anhydride. Using conventional liquid chromatography/mass spectrometry (LC/MS) analysis, the limit of detection (LOD) for the major product, triacetylated O6-MedG, was 10 fmol. On reaction of O6-MedG with 14C-acetic anhydride, using a specially designed enclosed system, the predominant product was 14C-di-acetyl O6-MedG. This change in reaction profile was due to a modification of the reaction procedure, introduced as a necessary safety precaution. The LOD for 14C-di-acetyl O6-MedG by AMS was determined as 79 amol, approximately 18,000-fold lower than that achievable by liquid scintillation counting (LSC). Although the assay has so far only been carried out with labeled standards, the degree of sensitivity obtained illustrates the potential of this assay for measuring O6-MedG levels in humans.  相似文献   
75.
76.
Paclitaxel (PTX) is a well-known antitumor drug, widely utilized in the treatment of breast, ovarian, head, and neck tumors, among others. The low aqueous solubility (< 1.0 μg/mL; log P = 3.96) limits its use by intravenous route, and alternatives found for the marketed products are associated with high toxicity. Incorporation of PTX into lipid nanocarriers has been considered an interesting nontoxic alternative for this route, but drug loading is usually low. This study aimed to analyze the influence of the lipid composition and three different lipid nanosystems—solid lipid nanoparticles, nanostructured lipid carriers (NLCs), and nanoemulsion—in PTX encapsulation and its biological response. The three proposed systems were prepared by hot melt homogenization followed by ultrasonication. Among the blank formulations first prepared, NLC had the smallest size (74 ± 1 nm), with negative zeta potential (? 11.4 ± 0.1 mV). The incorporation of 0.10 mg/mL PTX into this NLC formulation yielded high and stable encapsulation (0.089 ± 0.003 mg/mL), also supported by polarized light microscopy and differential scanning calorimetry curves. NLC-PTX was very effective against MCF-7 (IC50 25.33 ± 3.17 nM) and MDA-MB-231 breast cancer cell lines (IC50 2.13 ± 0.21 nM), compared to free PTX (IC50 > 500 nM). In addition, no significant cytotoxicity was found against fibroblast cells. Taken together, these results demonstrated that PTX was successfully incorporated into NLC with appropriate physicochemical characteristics for intravenous administration, suggesting that the use of NLC as vehicle to incorporate PTX may be a promising strategy in the treatment of breast cancer.  相似文献   
77.
78.
Omacetaxine is a natural product extract originating from Chinese medicine and finding therapeutic use as a potent myelosuppressive agent in leukemia. When planning in vitro cell biology experiments to assess omacetaxine activity against primary leukemic stem cells, it became apparent that the literature rarely describes the in vitro stability of the molecule, although accessible chromatographic methods have been published. Clearly whole organisms vs their component cells will differ in the way in which they handle xenobiotics, with the latter more dependent on physiochemical parameters such as pH and temperature in the absence of active metabolism or excretion. This could impact on the cells' experience of drug in culture. We therefore report here on examination of a modified, high‐performance liquid chromatography (HPLC) method with assessment of degradant production from a 72 h solution stability study, clearly demonstrating that omacetaxine is highly stable in representative cell culture conditions (37 °C, neutral pH) and persists for many days in marked contrast to its short‐half life in vivo. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
79.
There has been growing interest in the use of modified-carbon-nanotube electrodes in applications such as the electrochemical detection of biologically significant compounds, owing to their apparent "electrocatalytic" properties and ability to enhance oxidative signals. In spite of their salient properties, little work has been done to further examine the reasons for these reported characteristics. In this report, we present clear evidence that the presence of nanographite impurities within carbon nanotubes (CNTs) is responsible for providing the previously reported enhanced electrochemical response. We have demonstrated this effect on homocysteine, N-acetyl-L-cysteine, nitric oxide, and insulin, which are important biological agents in the body. Moreover, we also showed that the influence of nanographite impurities on the electrochemistry of carbon nanotubes is prevalent among a variety of CNTs, such as single-walled CNTs, double-walled CNTs, and few-walled CNTs. Our findings will have a profound influence upon the biomedical applications of CNTs.  相似文献   
80.
BACKGROUND: In chemical genetics, small molecules instead of genetic mutations are used to modulate the functions of proteins rapidly and conditionally, thereby allowing many biological processes to be explored. This approach requires the identification of compounds that regulate pathways and bind to proteins with high specificity. Structurally complex and diverse small molecules can be prepared using diversity-oriented synthesis, and the split-pool strategy allows their spatial segregation on individual polymer beads, but typically in quantities that limit their usefulness. RESULTS: We report full details of the first phase of our platform development, including the synthesis of a high-capacity solid-phase bead/linker system, the development of a reliable library encoding strategy, and the design of compound decoding methods both from macrobeads and stock solutions. This phase was validated by the analysis of an enantioselective, diversity-oriented synthesis resulting in an encoded 4320-member library of structurally complex dihydropyrancarboxamides. CONCLUSIONS: An efficient and accessible approach to split-pool, diversity-oriented synthesis using high-capacity macrobeads as individual microreactors has been developed. Each macrobead contains sufficient compound to generate a stock solution amenable to many biological assays, and reliable library encoding allows for rapid compound structure elucidation post-synthesis. This 'one-bead, one-stock solution' strategy is a central element of a technology platform aimed at advancing chemical genetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号