首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
化学   18篇
数学   2篇
物理学   13篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  2002年   3篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1987年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
21.
El-Wakil AM  Farag AB  El-Nahas MS 《Talanta》1993,40(6):841-844
A simple, rapid and sensitive method is described for the iodometric determination of microgram amounts of chromium(III), based on the oxidation of chromium(III) with periodate at pH 3.2, removal of the unreacted periodate by masking with molybdate and subsequent iodometric determination of the liberated iodate. Chromium(VI) can be determined by this method after prior reduction to chromium(III) with sodium sulphite. The method can also be used for the analysis of organochromium compounds.  相似文献   
22.
Decanoic acid/expanded graphite composite phase change materials (DA/EG-PCMs) with high stability and excellent thermal conductivity were fabricated by blending expanded graphite (EG) and decanoic acid (DA). The structure, thermo-physical properties, and the formation mechanism of DA/EG-PCMs were investigated. The obtained results demonstrate that EG exhibits a network-like porous structure, which is superimposed of 10–50 μm thick graphite sheet. Therefore, DA can be effectively encapsulated through the binding between micropores and the surface adsorption of EG resulting in a relatively smaller DA/EG-PCMs particle with better dispersibility. In addition, adding EG into DA also increased both the thermal stability and the thermal conductivity while decreasing the charging and discharging time, which resulted in improved thermal efficiencies. Although adding EG can negatively influence the phase change behavior of DA, the temperature and enthalpy of phase change were still as high as 34.9 °C and 153.1 J g?1, respectively. Based on a combination of experimental results and a comprehensive analysis of the phase transformation kinetics, it is concluded that DA/EG-PCMs with 10 mass% EG with improved thermal properties can meet the requirements for efficient temperature control in low-to-medium environments.  相似文献   
23.
24.
The thermochemistry and kinetics of the pyrolysis of 2-butanol have been conducted using ab initio methods (CBS-QB3 and CCSD(T)) and density functional theory (DFT). The enthalpies of formation and bond dissociation energies of some alcohols including 2-butanol and its derived radicals have been calculated. A variety of simple and complex dissociations have been examined. The results indicated that dehydration to 1- and 2-butene through four-center transition states is the most dominant channel at low to moderate temperatures (T ≤ 700 K), where formation of butenes is kinetically and thermodynamically more favorable than other complex and simple bond scission reactions. Although the C-C bond fission channels require more energy than needed for some complex decomposition reactions, the former pathways predominate at higher temperatures (T ≥ 800 K) due to the higher values of the pre-exponential factors. The progress of the complex decomposition reactions has been followed through intrinsic reaction coordinate (IRC) calculations to understand the mechanism of transformation of 2-butanol to different products.  相似文献   
25.
The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. Alpha-methyldopa (alpha-MD) in tablets is used in medication of hypertension. The Fe(III) and Cu(II) chelates with coupled products of adrenaline hydrogen tartarate (AHT), levodopa (LD), alpha-MD and carbidopa (CD) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical methods like IR, magnetic and UV-Vis spectra are used to investigate the structure of these chelates. Fe(III) form 1:2 (M:catecholamines) chelates while Cu(II) form 1:1 chelates. Catecholamines behave as a bidentate mono- or dibasic ligands in binding to the metal ions. IR spectra show that the catecholamines are coordinated to the metal ions in a bidentate manner with O,O donor sites of the phenolic -OH. Magnetic moment measurements reveal the presence of Fe(III) chelates in octahedral geometry while the Cu(II) chelates are square planar. The thermal decomposition of Fe(III) and Cu(II) complexes is studied using thermogravimetric (TGA) and differential thermal analysis (DTA) techniques. The water molecules are removed in the first step followed immediately by decomposition of the ligand molecules. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.  相似文献   
26.
Due to the world's over-reliance on fossil fuels there has been a developing interest in the production of renewable biofuels such as methyl and ethyl esters derived from vegetable oils and animal fats. To increase our understanding of the combustion chemistry of esters, the oxidation of methyl butanoate and ethyl propanoate, both with a molecular formula of C5H10O2, have been studied in a series of high-temperature shock tube experiments. Ignition delay times for a series of mixtures, of varying fuel/oxygen equivalence ratios (phi = 0.25-1.5), were measured behind reflected shock waves over the temperature range 1100-1670 K, and at pressures of 1.0, and 4.0 atm. It was found that ethyl propanoate was consistently faster to ignite than methyl butanoate, particularly at lower temperatures. Detailed chemical kinetic mechanisms have been assembled and used to simulate these experiments with good agreement observed. Rate of production analyses using the detailed mechanisms shows that the faster reactivity of ethyl propanoate can be explained by a six-centered unimolecular decomposition reaction with a relatively low activation energy barrier producing propanoic acid and ethylene. The elimination reaction itself is not responsible for the increased reactivity; it is the faster reactivity of the two products, propanoic acid and ethylene that leads to this behavior.  相似文献   
27.
Russian Journal of Physical Chemistry A - Atmospheric oxidation of methyl propanoate (MP) by the OH radical has been performed using density functional theory (BMK, BBIK) and ab initio (MP2,...  相似文献   
28.
29.
A principal limitation of single-molecule spectroscopy in solution is the diffusion-limited residence time of a given molecule within the detection volume. A common solution to this problem is to immobilize molecules of interest on a passivated glass surface for extending the observation time to obtain reliable data statistics. However, surface tethering of molecules often introduces artifacts, particularly when studying the structural dynamics of biomolecules. To circumvent this limitation, we investigated alternative ways to extend single-molecule observation times in solution without surface immobilization. Among various possibilities, the so-called anti-Brownian electro-kinetic trap (or ABEL trap) seems best suited to achieve this goal. The essential part of that trap is a feedback-controlled electro-kinetic steering of a molecule’s position in reaction to its diffusive Brownian motion which is monitored by fluorescence, thus keeping the molecule within a sub-micron sized detection volume. Fluorescence trace recordings of over thousands of milliseconds duration on individual dye molecules within an ABEL trap have been reported. In this short review, we shall briefly discuss the principle and some results of ABEL trapping of individual molecules with possible extensions to future works.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号