首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   18篇
化学   289篇
晶体学   6篇
力学   6篇
数学   12篇
物理学   78篇
  2023年   3篇
  2022年   5篇
  2021年   2篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   10篇
  2014年   16篇
  2013年   20篇
  2012年   20篇
  2011年   23篇
  2010年   13篇
  2009年   7篇
  2008年   25篇
  2007年   33篇
  2006年   18篇
  2005年   27篇
  2004年   24篇
  2003年   13篇
  2002年   10篇
  2001年   7篇
  2000年   11篇
  1999年   2篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   5篇
  1990年   4篇
  1988年   2篇
  1987年   6篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   8篇
  1978年   2篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有391条查询结果,搜索用时 15 毫秒
141.
We studied a complementary organic inverter consisting of a p-type semiconductor, metal-free phthalocyanine (H(2)Pc), and an n-type semiconductor, tetrakis(thiadiazole)porphyrazine (H(2)TTDPz), operated through the ionic-liquid gate dielectrics of N,N-diethyl-N-methyl(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)imide (DEME-TFSI). This organic inverter exhibits high performance with a very low operation voltage below 1.0 V and a dynamic response up to 20 Hz.  相似文献   
142.
Electronic spectra of the B?-X? transition of the 1-methylvinylthio radical were observed in a discharged jet of propylene sulfide by laser-induced fluorescence spectroscopy. Identification of the spectral carrier was made by comparing the observed spectra with results of molecular orbital calculations, in particular, for vibrational frequencies, rotational contour simulations, and the Franck-Condon simulations. Vibrational structures observed in the electronic spectra indicate that the 1-methylvinylthio radical can be regarded as a molecule with C(s) symmetry at the zero-point levels of both the excited and ground states.  相似文献   
143.
The G-quadruplex, a four-stranded DNA structure with stacked guanine tetrads (G-quartets), has recently been attracting attention because of its critical roles in vitro and in vivo. In particular, the G-quadruplex functions as ligands for metal ions and aptamers for various molecules. Interestingly, the G-quadruplex can show peroxidase-like activity with an anionic porphyrin, iron (III) protoporphyrin IX (hemin). Importantly, hemin binds to G-quadruplexes with high selectivity over single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), which is attributable to an electrostatic repulsion of phosphate groups in ssDNA and dsDNA. The G-quadruplex and hemin-G-quadruplex complex allow development of sensing techniques to detect DNA, metal ions and proteins. In addition to hemin, anionic phthalocyanines also bind to the G-quadruplex formed by human telomere DNA, specifically over ssDNA and dsDNA. Since the binding of anionic phthalocyanines to the G-quadruplex causes an inhibition of telomerase activity, which plays a role in the immortal growth of cancer cells, anionic phthalocyanines are promising as novel anticancer drug candidates. This review focuses on the specific binding of hemin and anionic phthalocyanines to G-quadruplexes and the applications in vitro and in vivo of this binding property.  相似文献   
144.
The results of DFT investigation suggest that C2–C3 bond cleavage of the 2,2-dianisyl-3,3-dimethyl-4-methylenecyclobutanone radical cation (2b+) is preferred from both a thermodynamic and a kinetic perspective while C1–C2 bond cleavage is both thermodynamically and kinetically favored in the parent methylenecyclobutanone radical cation (MCB+) and the 2,2-diphenyl- and 2,2-dianisyl-4-isopropylidenecyclobutanone radical cations (1a-b+). The DFT calculations also suggest that a bonding character exists in C2–C3 bond of the 2,2-diphenyl-3,3-dimethyl-4-methylenecyclobutanone radical cation (2a+) but not in that of 2b+. Consequently, the unique reactivity of 2b+ can be accounted for by the existence of the steric hindrance between methyl and anisyl substituents, which favors C2–C3 bond cleavage, and the absence of C2–C3 bonding character. Those results support that the previous experimental results of photoinduced electron-transfer reactions of 1 and 2. The combined factors comprise stereoelectronic substituent effects that lead to a drastic change in the reaction pathways followed by 2b+ relative to that of other methylenecyclobutanone-type radical cations.  相似文献   
145.
We analyzed the whole-body distribution of 14C–ADP-labeled silica nanoparticles (14C–ADP–SiO2 nanoparticles) and submicron particles (14C–ADP–SiO2 submicron particles) after intravenous injection into ICR mice. The 14C–ADP–SiO2 nanoparticles and submicron particles were synthesized before the injection and the particle size was 19.6 and 130 nm, respectively. Similarly, the shape was spherical and the crystallinity was amorphous. After the synthesis, we injected mice with the 14C–ADP–SiO2 nanoparticles or the 14C–ADP–SiO2 submicron particles and dissected tissues after 1, 2, 4, 8 and 24 h. The radioactivity in the tissues was measured with a liquid scintillation counter. As a result, the retention percentage in bone, skin, lymph nodes, and the digestive mixture was at least twofold higher in the 14C–ADP–SiO2 nanoparticles-exposed mice, whereas the retention percentage in the kidney was statistically higher in the 14C–ADP–SiO2 submicron particles-exposed mice. Both types of 14C–ADP–SiO2 particles mainly translocated to the muscle, bone, skin, and liver, but hardly translocated to the brain and olfactory bulb. Furthermore, the 14C–ADP–SiO2 nanoparticles had a higher retention percentage (62.4 %) in the entire body at 24-h post-injection than did the 14C–ADP–SiO2 submicron particles (50.7 %). Therefore, we suggested that the 14C–ADP–SiO2 nanoparticles might be more likely than the 14C–ADP–SiO2 submicron particles to be retained in the body, and consequently they might be gradually accumulated by chronic exposure.  相似文献   
146.
Off-axis electron-cyclotron heating in an axisymmetric barrier mirror produces a cylindrical layer with energetic electrons, which flow through the central cell and into the end region. The layer, producing a localized bumped ambipolar potential Phi(C), forms a strong shear of radial electric fields E(r) and peaked vorticity with the direction reversal of E(r)xB sheared flow near the Phi(C) peak. Intermittent vortexlike turbulent structures near the layer are suppressed in the central cell by this actively produced transverse energy-transport barrier; this results in T(e) and T(i) rises surrounded by the layer.  相似文献   
147.
The core fucose, a major modification of N‐glycans, is implicated in immune regulation, such as the attenuation of the antibody‐dependent cell‐mediated cytotoxicity of antibody drugs and the inhibition of anti‐tumor responses via the promotion of PD‐1 expression on T cells. Although the core fucose regulates many biological processes, no core fucose recognition molecule has been identified in mammals. Herein, we report that Dectin‐1, a known anti‐β‐glucan lectin, recognizes the core fucose on IgG antibodies. A combination of biophysical experiments further suggested that Dectin‐1 recognizes aromatic amino acids adjacent to the N‐terminal asparagine at the glycosylation site as well as the core fucose. Thus, Dectin‐1 appears to be the first lectin‐like molecule involved in the heterovalent and specific recognition of characteristic N‐glycans on antibodies.  相似文献   
148.
149.
150.
Brain abscess observed by localized proton magnetic resonance spectroscopy   总被引:3,自引:0,他引:3  
We encountered a case of brain abscess that was difficult to differentiate from glioblastoma. Localized 1H-MRS was found to be useful for obtaining information on the biochemical status of brain abscess. The peak of lipid and high residual peak of NAA (N-acetyl-aspartate) were observed in the cystic lesion of the brain abscess by 1H-MRS. The NAA/Cho (Choline-containing compounds) ratio in brain parenchyma showing an edematous lesion before therapy gradually increased with the relief of inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号