首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1412篇
  免费   35篇
  国内免费   7篇
化学   1035篇
晶体学   10篇
力学   119篇
数学   65篇
物理学   225篇
  2023年   12篇
  2022年   11篇
  2021年   8篇
  2020年   21篇
  2019年   15篇
  2018年   15篇
  2017年   12篇
  2016年   28篇
  2015年   19篇
  2014年   26篇
  2013年   54篇
  2012年   84篇
  2011年   86篇
  2010年   58篇
  2009年   42篇
  2008年   83篇
  2007年   90篇
  2006年   89篇
  2005年   75篇
  2004年   85篇
  2003年   94篇
  2002年   62篇
  2001年   26篇
  2000年   25篇
  1999年   24篇
  1998年   18篇
  1997年   16篇
  1996年   15篇
  1995年   14篇
  1994年   12篇
  1993年   13篇
  1992年   20篇
  1991年   21篇
  1990年   13篇
  1989年   10篇
  1988年   7篇
  1987年   7篇
  1986年   5篇
  1985年   16篇
  1984年   25篇
  1983年   11篇
  1982年   18篇
  1981年   10篇
  1980年   6篇
  1979年   7篇
  1978年   10篇
  1976年   7篇
  1975年   5篇
  1974年   4篇
  1973年   5篇
排序方式: 共有1454条查询结果,搜索用时 31 毫秒
71.
72.
[structure: see text] Synthesis and fluorescence properties of pi-conjugated compounds having alternately an aromatic ring such as benzene, pyridine, and thiophene and an enediyne unit in the backbone are described.  相似文献   
73.
The effect of the anionic surfactant SDS (sodium dodecyl sulfate) on the adsorption behavior of cationic hydroxyethyl cellulose (Polymer JR-400) and hydrophobically modified cationic cellulose (Quatrisoft LM-200) at hydrophobized silica has been investigated by null ellipsometry and compared with the previous data for adsorption onto hydrophilic silica surfaces. The adsorbed amount of LM-200 is found to be considerably larger than the adsorbed amount of JR-400 at both surfaces. Both polymers had higher affinity toward hydrophobized silica than to silica. The effect of SDS on polymer adsorption was studied under two different conditions: adsorption of polymer/SDS complexes from premixed solutions and addition of SDS to preadsorbed polymer layers. Association of the surfactant to the polymer seems to control the interfacial behavior, which depends on the surfactant concentration. For the JR-400/SDS complex, the adsorbed amount on hydrophobized silica started to increase progressively from much lower SDS concentrations, while the adsorbed amount on silica increased sharply only slightly below the phase separation region. For the LM-200/SDS complex, the adsorbed amounts increased progressively from very low SDS concentrations at both surfaces, and no large difference in the adsorption behavior was observed between two surfaces below the phase separation region. The complex desorbed from the surface at high SDS concentrations above the critical micelle concentration. The reversibility of the adsorption of polymer/SDS complexes upon rinsing was also investigated. When the premixed polymer/SDS solutions at high SDS concentrations (>5 mM) were diluted by adding water, the adsorbed amount increased due to the precipitation of the complex. The effect of the rinsing process on the adsorbed layer was determined by the hydrophobicity of the polymer and the surface.  相似文献   
74.
The Cp(2)Zr-catalyzed hydrosilylation of ethylene was theoretically investigated with DFT and MP2-MP4(SDQ) methods, to clarify the reaction mechanism and the characteristic features of this reaction. Although ethylene insertion into the Zr-SiH(3) bond of Cp(2)Zr(H)(SiH(3)) needs a very large activation barrier of 41.0 (42.3) kcal/mol, ethylene is easily inserted into the Zr-H bond with a very small activation barrier of 2.1 (2.8) kcal/mol, where the activation barrier and the energy of reaction calculated with the DFT(B3LYP) method are given and in parentheses are those values which have been corrected for the zero-point energy, hereafter. Not only this ethylene insertion reaction but also the coupling reaction between Cp(2)Zr(C(2)H(4)) and SiH(4) easily takes place to afford Cp(2)Zr(H)(CH(2)CH(2)SiH(3)) and Cp(2)Zr(CH(2)CH(3))(SiH(3)) with activation barriers of 0.3 (0.7) and 5.0 (5.4) kcal/mol, respectively. This coupling reaction involves a new type of Si-H sigma-bond activation which is similar to metathesis. The important interaction in the coupling reaction is the bonding overlap between the d(pi)-pi bonding orbital of Cp(2)Zr(C(2)H(4)) and the Si-H sigma orbital. The final step is neither direct C-H nor Si-C reductive elimination, because both reductive eliminations occur with a very large activation barrier and significantly large endothermicity. This is because the d orbital of Cp(2)Zr is at a high energy. On the other hand, ethylene-assisted C-H reductive elimination easily occurs with a small activation barrier, 5.0 (7.5) kcal/mol, and considerably large exothermicity, -10.6 (-7.1) kcal/mol. Also, ethylene-assisted Si-C reductive elimination and metatheses of Cp(2)Zr(H)(CH(2)CH(2)SiH(3)) and Cp(2)Zr(CH(2)CH(3))(SiH(3)) with SiH(4) take place with moderate activation barriers, 26.5 (30.7), 18.4 (20.5), and 28.3 (31.5) kcal/mol, respectively. From these results, it is clearly concluded that the most favorable catalytic cycle of the Cp(2)Zr-catalyzed hydrosilylation of ethylene consists of the coupling reaction of Cp(2)Zr(C(2)H(4)) with SiH(4) followed by the ethylene-assisted C-H reductive elimination.  相似文献   
75.
A chiral stationary phase prepared by bonding L -valine-t-butylamide to XE-60 has been coated on glass and metal capillaries. The performances of the chiral glass and metal columns were equivalent to those of commercial fused silica capillary columns. The thermal stability of the glass column was examined up to 280°C. It was found that no appreciable change in separation factor (α value) was observed up to 230°C. The α values gradually decreased between 240 and 260°C, and enantiomer separation was no longer achieved at 280°C. It was concluded that the allowable upper limit temperature of the chiral stationary phase is between 230 and 240°C in the isothermal mode, and ca 260°C in temperature-programmed mode.  相似文献   
76.
The intermolecular aromatic substitution of N,N-dialkylanilines and alkoxybenzenes with diazoesters is shown to proceed in the presence of catalytic amounts of both copper(II) salt and acid (Lewis or Brønsted). This method is a mild and rare metal-free C-C bond formation reaction between aromatic (sp2) and aliphatic (sp3) carbons.  相似文献   
77.
We reported previously that sustained release matrix tablets showed zero-order drug release without being affected by pH change. To understand drug release mechanisms more fully, we monitored the swelling and erosion of hydrating tablets using magnetic resonance imaging (MRI). Three different types of tablets comprised of polyion complex-forming materials and a hydroxypropyl methylcellulose (HPMC) were used. Proton density- and diffusion-weighted images of the hydrating tablets were acquired at intervals. Furthermore, apparent self-diffusion coefficient maps were generated from diffusion-weighted imaging to evaluate the state of hydrating tablets. Our findings indicated that water penetration into polyion complex tablets was faster than that into HPMC matrix tablets. In polyion complex tablets, water molecules were dispersed homogeneously and their diffusivity was relatively high, whereas in HPMC matrix tablets, water molecule movement was tightly restricted within the gel. An optimal tablet formulation determined in a previous study had water molecule penetration and diffusivity properties that appeared intermediate to those of polyion complex and HPMC matrix tablets; water molecules were capable of penetrating throughout the tablets and relatively high diffusivity was similar to that in the polyion complex tablet, whereas like the HPMC matrix tablet, it was well swollen. This study succeeded in characterizing the tablet hydration process. MRI provides profound insight into the state of water molecules in hydrating tablets; thus, it is a useful tool for understanding drug release mechanisms at a molecular level.  相似文献   
78.
We previously reported that an Fe(II) complex ligated by two (Z)-2,6-di(1H-pyrazol-1-yl)-4-styrylpyridine ligands (Z-H) presented a solid state ligand-driven light-induced spin change (LD-LISC) upon one-way Z-to-E photoisomerization, although modulation of the magnetism was trivial at ambient temperatures (Chem. Commun.2011, 47, 6846). Here, we report the synthesis of new derivatives of Z-H, Z-CN and Z-NO(2), in which electron-withdrawing cyano and nitro substituents are introduced at the 4-position of the styryl group to attain a more profound photomagnetism at ambient temperatures. Z-CN and Z-NO(2) undergo quantitative one-way Z-to-E photochromism upon excitation of the charge transfer band both in acetonitrile and in the solid state, similar to the behavior observed for Z-H. In solution, these substituents stabilized the low-spin (LS) states of Z-CN and Z-NO(2), and the behavior was quantitatively analyzed according to the Evans equation. The photomagnetic properties in the solid state, on the other hand, cannot be explained in terms of the substituent effect alone. Z-CN displayed photomagnetic properties almost identical to those of Z-H. Z-CN preferred the high-spin (HS) state at all temperatures tested, whereas photoirradiated Z-CN yielded a lower χ(M)T at ambient temperatures. The behavior of Z-NO(2) was counterintuitive, and the material displayed surprising photomagnetic properties in the solid state. Z-NO(2) occupied the LS state at low temperatures and underwent thermal spin crossover (SCO) with a T(1/2) of about 270 K. The photoirradiated Z-NO(2) displayed a higher value of χ(M)T and the modulation of χ(M)T exceeded that of Z-H or Z-CN. Z-NO(2)·acetone, in which acetone molecules were incorporated into the crystal lattice, further stabilized the LS state (T(1/2) > 300 K), thereby promoting large modulations of the χ(M)T values (87% at 273 K and 64% at 300 K) upon Z-to-E photoisomerization. Single crystal X-ray structure analysis revealed that structural factors played a vital role in the photomagnetic properties in the solid state. Z-H and Z-CN favored intermolecular π-π stacking among the ligand molecules. The coordination sphere around the Fe(II) nucleus was distorted, which stabilized the HS state. In contrast, Z-NO(2)·acetone was liberated from such intermolecular π-π stacking and coordination distortion, resulting in the stabilization of the LS state.  相似文献   
79.
The UVA is currently thought to be carcinogenic because, similar to UVB, it induces the formation of cyclobutane pyrimidine dimers (CPDs). Various drugs have been reported to cause photosensitive drug eruptions as an adverse effect. Although the precise mechanism of photosensitive drug eruption remains to be elucidated, it is generally accepted that free radicals and other reactive molecules generated via UV‐irradiated drugs play important roles in the pathogenesis of photosensitive drug eruptions. The waveband of concern for photo‐reactive drugs is UVA‐visible light, but some extend into the UVB region. We tested whether photosensitive drugs could enhance CPD formation after UVA exposure by using isolated DNA in the presence of several reported photosensitive drugs using high‐performance liquid chromatography. We found that the diuretic agent hydrochlorothiazide (HCT) significantly enhanced the production of TT dimers over a wide range of UVA. Furthermore, we investigated whether UVA plus HCT could enhance CPD production in xeroderma pigmentosum model mice defective in nucleotide excision repair. Immunofluorescence studies showed that CPD formation in the skin significantly increased after 365 nm narrow‐band UVA irradiation in the presence of HCT, compared with that in wild‐type mice. HCT could be used with caution because of its enhancement of UVA‐induced DNA damage.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号