首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   17篇
化学   385篇
晶体学   2篇
力学   2篇
数学   6篇
物理学   65篇
  2022年   6篇
  2021年   4篇
  2020年   9篇
  2019年   8篇
  2018年   4篇
  2016年   6篇
  2015年   11篇
  2014年   10篇
  2013年   15篇
  2012年   18篇
  2011年   30篇
  2010年   11篇
  2009年   17篇
  2008年   20篇
  2007年   13篇
  2006年   28篇
  2005年   15篇
  2004年   12篇
  2003年   11篇
  2002年   12篇
  2001年   9篇
  2000年   12篇
  1999年   8篇
  1997年   4篇
  1996年   3篇
  1994年   6篇
  1993年   3篇
  1992年   7篇
  1991年   4篇
  1990年   8篇
  1989年   4篇
  1988年   9篇
  1987年   12篇
  1986年   6篇
  1985年   16篇
  1984年   11篇
  1983年   6篇
  1982年   8篇
  1981年   7篇
  1980年   6篇
  1979年   6篇
  1978年   6篇
  1977年   6篇
  1976年   5篇
  1975年   3篇
  1968年   2篇
  1967年   3篇
  1966年   5篇
  1929年   2篇
  1927年   2篇
排序方式: 共有460条查询结果,搜索用时 15 毫秒
101.
Glass ampoule breakage during the freeze-drying process was prevented by the addition of sodium chloride to the formulation of lyophilization products of sodium thiopental. In order to clarify the ampoule breakage prevention mechanism, the physicochemical behavior of the freeze-drying process was monitored by simultaneous XRD-DSC measurements and thermal mechanical analysis (TMA). During the freezing process of formulated solution, the smaller heat of fusion of crystallized ice with the addition of sodium chloride was observed in comparison to that without sodium chloride. Although a greater amorphous portion remained, a higher crystal habit of hexagonal ice was reproducibly observed in the XRD patterns with the addition of sodium chloride during the freezing process. In the measurement of TMA, the scattering of the thermal expansion rate of formulated solution was significantly reduced by the addition of sodium chloride. These observations indicated that the addition of sodium chloride minimized the scattering of the thermal expansion rate and might be a cause for the inhibition of glass ampoule breakage during the freeze-drying process.  相似文献   
102.
2-Mercapto-N-2-naphthylacetamide (thionalide) loaded on glass beads with the aid of collodion is used for preconcentration of microgram levels of antimony(III) from aqueous solution. Antimony is quantitatively retained on the loaded beads from 0.4–0.8 mol l?1 hydrochloric acid solutions; equilibration is achieved within 1 min. The retention capacity of the beads is 0.2 μml Sb g?1 at 0.6 mol l?1 hydrochloric acid. The maximum flow rate for quantitative retention is 1.27 ml min?1 cm?2. Antimony retained on the column is completely eluted with 10 ml of 6.0 mol l?1 hydrochloric acid at flow rates<1.9 ml min?1 cm?2.  相似文献   
103.
Coarse‐grained molecular dynamics (CGMD) simulations with the MARTINI force field were performed to reproduce the protein–ligand binding processes. We chose two protein–ligand systems, the levansucrase–sugar (glucose or sucrose), and LinB–1,2‐dichloroethane systems, as target systems that differ in terms of the size and shape of the ligand‐binding pocket and the physicochemical properties of the pocket and the ligand. Spatial distributions of the Coarse‐grained (CG) ligand molecules revealed potential ligand‐binding sites on the protein surfaces other than the real ligand‐binding sites. The ligands bound most strongly to the real ligand‐binding sites. The binding and unbinding rate constants obtained from the CGMD simulation of the levansucrase–sucrose system were approximately 10 times greater than the experimental values; this is mainly due to faster diffusion of the CG ligand in the CG water model. We could obtain dissociation constants close to the experimental values for both systems. Analysis of the ligand fluxes demonstrated that the CG ligand molecules entered the ligand‐binding pockets through specific pathways. The ligands tended to move through grooves on the protein surface. Thus, the CGMD simulations produced reasonable results for the two different systems overall and are useful for studying the protein–ligand binding processes. © 2014 Wiley Periodicals, Inc.  相似文献   
104.
A simple method is presented for the determination of arsenic in rocks and in sediments by neutron activation. After irradiating a sample it is, without any other treatment, directly heated in condensed phosphoric acid containing sodium chloride or sodium bromide to evolve arsenic as arsenic(III) chloride or bromide. The distillate is absorbed in distilled water, in which arsenic is later precipitated in elementary form by adding hypophosphite to the solution. From arsenite, arsenic(III) oxide, arsenate and arsenic(III) sulphide, arsenic chloride can be evolved with NaCl-CPA reagent, but elementary arsenic and arsenic(V) oxide do not react with it. However, metallic arsenic is found to react with KIO3-NaCl-CPA and arsenic(V) oxide with the NaBr-CPA, both both evolving arsenic(III) chloride or bromide. Therefore, successive distillations, the first with NaCl-CPA and the second with NaBr-CPA, give a satisfactory means of differential determination of arsenic(III) and arsenate as well as arsenic(V) oxide. For the elementary arsenic a problem still now remains. The chemical recovery of carrier goes well beyond 95%. Part of this work was performed at the Research Reactor Institute, Kyoto University.  相似文献   
105.
5-Benzoyl-4-methylpyrimidines 4a,b and 5-acetyl-4-phenylpyrimidines 5a,b reacted with hydrazines in alcoholic acidic medium to give respectively 4-acetyl-3-phenylpyrazoles 7, 9 and 10 and 4-benzoyl-3-methylpyrazoles 6, 8 and 11 . In the reaction with phenylhydrazine, 5-benzoyl-4-methyl-2-methylthiopyrimidine ( 4a ) led exclusively to 4-acetyl-1,3-diphenylpyrazole ( 10 ) as 5-acetyl4-phenyl-2-methylthiopyrimidine ( 5a ) led to 4-benzoyl-3-methyl-1-phenylpyrazole ( 11 ) via the initial formation of phenylhydrazones of pyrimidines 4a and 5a . However, 5-benzoyl-4-methyl-2-phenylpyrimidine ( 4b ) and 5-acetyl-2,4-diphenylpyrimidine ( 5b ) reacted with phenylhydrazine to afford, each of them, a mixture of two isomeric pyrazoles. The mechanism of these ring contraction reactions is discussed.  相似文献   
106.
Positron states in the BEDT-TTF based organic superconductors, namely -Cu(NCS)2, -CuCN[N(CN)2] and -Cu[N(CN)2]Br salts, have been calculated using the superposedatom model and the numerical relaxation technique. For each salt positrons are distributed predominantly around the anion layers and have a little overlap with the TTF skeleton and the outer S atoms which are responsible for the conductivity.  相似文献   
107.
108.
109.
110.
A multiscale simulation method, "multiscale essential sampling (MSES)," is proposed for calculating free energy surface of proteins in a sizable dimensional space with good scalability. In MSES, the configurational sampling of a full-dimensional model is enhanced by coupling with the accelerated dynamics of the essential degrees of freedom. Applying the Hamiltonian exchange method to MSES can remove the biasing potential from the coupling term, deriving the free energy surface of the essential degrees of freedom. The form of the coupling term ensures good scalability in the Hamiltonian exchange. As a test application, the free energy surface of the folding process of a miniprotein, chignolin, was calculated in the continuum solvent model. Results agreed with the free energy surface derived from the multicanonical simulation. Significantly improved scalability with the MSES method was clearly shown in the free energy calculation of chignolin in explicit solvent, which was achieved without increasing the number of replicas in the Hamiltonian exchange.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号