首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   16篇
  国内免费   7篇
化学   135篇
力学   1篇
数学   67篇
物理学   32篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   7篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   9篇
  2015年   7篇
  2014年   2篇
  2013年   12篇
  2012年   15篇
  2011年   8篇
  2010年   10篇
  2009年   10篇
  2008年   11篇
  2007年   17篇
  2006年   8篇
  2005年   10篇
  2004年   14篇
  2003年   9篇
  2002年   10篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   8篇
  1996年   9篇
  1995年   6篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1973年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
51.
52.
53.
New stimuli‐responsive nanomaterials, made up of host–guest lipidic cubic phases (LCPs) are presented. These biocompatible, stable, transparent and water‐insoluble LCPs are composed of monoolein (MO) as a neutral host, and small amounts of one of three judiciously designed and synthesized designer lipids as guest that preserve the structure and stability of LCPs, but render them specific functionalities. Efficient pH‐ and light‐induced binding, release and sequestration of hydrophilic dyes are demonstrated. Significantly, these processes can be performed sequentially, thereby achieving both temporal and dosage control, opening up the possibility of using such LCPs as effective carriers to be used in drug delivery applications. Specifically, because of the inherent optical transparency and molecular isotropy of LCPs they can be envisaged as light‐induced drug carriers in ophthalmology. The results presented here demonstrate the potential of molecular design in creating new functional materials with predicted operating mode.  相似文献   
54.
Supramolecular gels often become destabilized by the transition of the gelator into a more stable crystalline phase, but often the long timescale and sporadic localization of the crystalline phase preclude a persistent observation of this process. We present a pentapeptide gel–crystal phase transition amenable for continuous visualization and quantification by common microscopic methods, allowing the extraction of kinetics and visualization of the dynamics of the transition. Using optical microscopy and microrheology, we show that the transition is a sporadic event in which gel dissolution is associated with microcrystalline growth that follows a sigmoidal rate profile. The two phases are based on β‐sheets of similar yet distinct configuration. We also demonstrate that the transition kinetics and crystal morphology can be modulated by extrinsic factors, including temperature, solvent composition, and mechanical perturbation. This work introduces an accessible model system and methodology for studying phase transitions in supramolecular gels.  相似文献   
55.
Gynecologic malignancies are a leading cause of death in women worldwide. Standard treatment for many primary and recurrent gynecologic cancer cases includes external-beam radiation followed by brachytherapy. Magnetic resonance (MR) imaging is beneficial in diagnostic evaluation, in mapping the tumor location to tailor radiation dose and in monitoring the tumor response to treatment. Initial studies of MR guidance in gynecologic brachytherapy demonstrate the ability to optimize tumor coverage and reduce radiation dose to normal tissues, resulting in improved outcomes for patients.  相似文献   
56.
Bambusurils (BUs) are known to be rigid cavitands that feature an extended, jigger-like conformation, and the BU[6]s strongly bind anions within their hydrophobic cavity. These features are not necessarily shared by the family of perthio-BUs. This study reveals that perthio-BUs assume a compact conformation and perthio-BU[6]s are poor anion binders, crystallizing as anion-free species from solutions containing halide salts. Computational studies show that the equatorial sulfur atoms compete against guest anions for binding with the glycoluril methine groups via strong van der Waals (vdW) attractive interactions. These competitive contacts not only account for the diminished anion-binding of perthio-BUs, but also explain their compact conformation. The semithio- and perthio-BU[4]s form linear coordination polymers with HgII in the solid-state regardless of their intrinsic molecular conformation. The strong involvement of sulfur atoms in intramolecular interactions differentiates the equatorial from the axial (peripheral) heteroatoms, thus offering chemoselective and regioselective transformations.  相似文献   
57.
The title zwitterion (2S)‐2‐azaniumyl‐1‐hydroxy‐3‐phenylpropan‐1‐olate, C9H11NO2, also known as L‐phenylalanine, was characterized using synchrotron X‐rays. It crystallized in the monoclinic space group P21 with four molecules in the asymmetric unit. The 0.62 Å resolution structure is assumed to be closely related to the fibrillar form of phenylalanine, as observed by electron microscopy and electron diffraction. The structure exists in a zwitterionic form in which π–π stacking and hydrogen‐bonding interactions are believed to form the basis of the self‐assembling properties.  相似文献   
58.
59.
4‐Aminobipyridine derivatives form strong inclusion complexes with cucurbit[6]uril, exhibiting remarkably large enhancements in fluorescence intensity and quantum yields. The remarkable complexation‐induced pKa shift (ΔpKa=3.3) highlights the strong charge–dipole interaction upon binding. The reversible binding phenomenon can be used for the design of switchable beacons that can be incorporated into cascades of binding networks. This concept is demonstrated herein by three different applications: 1) a switchable fluorescent beacon for chemical sensing of transition metals and other ligands; 2) direct measurement of binding constants between cucurbit[6]uril and various nonfluorescent guest molecules; and 3) quantitative monitoring of biocatalytic reactions and determination of their kinetic parameters. The latter application is illustrated by the hydrolysis of an amide catalyzed by penicillin G acylase and by the elimination reaction of a β‐cabamoyloxy ketone catalyzed by aldolase antibody 38C2.  相似文献   
60.
The core recognition motif of the amyloidogenic beta-amyloid polypeptide is a dipeptide of phenylalanine. This dipeptide readily self-assembles to form discrete, hollow nanotubes with high persistence lengths. The simplicity of the nanotube formation, combined with ideal physical properties, make these nanotubes highly desirable for a range of applications in bionanotechnology. To fully realize the potential of such structures, it is first necessary to gain a comprehensive understanding of their chemical and physical properties. Previously, the thermal stability of these nanotubes has been investigated by electron microscopy. Here, we further our understanding of the structural stability of the nanotubes upon dry-heating using the atomic force microscope (AFM), and for the first time identify their degradation product utilizing time-of-flight secondary-ion mass spectrometry. We show that the nanotubes are stable at temperatures up to 100 degrees C, but on heating to higher temperatures begin to lose their structural integrity with an apparent collapse in tubular structure. With further increases in temperature up to and above 150 degrees C, there is a degradation of the structure of the nanotubes through the release of phenylalanine building blocks. The breakdown of structure is observed in samples that are either imaged at elevated temperatures or imaged following cooling, suggesting that once phenylalanine is lost from the nanotubes they are susceptible to mechanical deformation by the imaging AFM probe. This temperature-induced plasticity may provide novel properties for these peptide nanotubes, including possible applications as scaffolds and drug delivery devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号