首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   11篇
  国内免费   9篇
化学   151篇
力学   3篇
数学   77篇
物理学   54篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   7篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   13篇
  2015年   7篇
  2014年   2篇
  2013年   19篇
  2012年   16篇
  2011年   11篇
  2010年   12篇
  2009年   11篇
  2008年   14篇
  2007年   17篇
  2006年   9篇
  2005年   13篇
  2004年   18篇
  2003年   9篇
  2002年   11篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   9篇
  1996年   10篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1978年   3篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1955年   1篇
排序方式: 共有285条查询结果,搜索用时 15 毫秒
31.
A rationally designed oligomerization inhibitor interacts with early intermediate assemblies of amyloid‐β polypeptide (Aβ) through the aromatic elements and inhibits their assembly into the toxic oligomers that cause Alzheimer's disease by a unique Cα‐methylation β‐breakage strategy. The electrostatic potential of the low‐energy conformation of the dipeptide inhibitor bound to Aβ is shown.

  相似文献   

32.
33.
We investigate one of the fundamental reactions in solutions, the neutralization of an acid by a base. We use a photoacid, 8-hydroxy-1,3,6-trisulfonate-pyrene (HPTS; pyranine), which upon photoexcitation reacts with acetate under transfer of a deuteron (solvent: deuterated water). We analyze in detail the resulting bimodal reaction dynamics between the photoacid and the base, the first report on which was recently published. We have ascribed the bimodal proton-transfer dynamics to contributions from preformed hydrogen bonding complexes and from initially uncomplexed acid and base. We report on the observation of an additional (6 ps)(-1) contribution to the reaction rate constant. As before, we analyze the slower part of the reaction within the framework of the diffusion model and the fastest part by a static, sub-150 fs reaction rate. Adding the second static term considerably improves the overall modeling of the experimental results. It also allows to connect experimentally the diffusion controlled bimolecular reaction models as defined by Eigen-Weller and by Collins-Kimball. Our findings are in agreement with a three-stage mechanism for liquid phase intermolecular proton transfer: mutual diffusion of acid and base to form a "loose" encounter complex, followed by reorganization of the solvent shells and by "tightening" of the acid-base encounter complex. These rearrangements last a few picoseconds and enable a prompt proton transfer along the reaction coordinate, which occurs faster than our time resolution of 150 fs. Alternative models for the explanation of the slower "on-contact" reaction time of the loose encounter complex in terms of proton transmission through a von Grotthuss mechanism are also discussed.  相似文献   
34.
Sasmal S  Sinha MK  Keinan E 《Organic letters》2004,6(8):1225-1228
A practical method for the separation and purification of cucurbituril (CB) hexamers was developed on the basis of affinity chromatography using aminopentylaminomethylated polystyrene beads. This recyclable resin, which can be used repeatedly, facilitates the general preparation of cucurbituril derivatives and compensates for the usually moderate yields and mixed products that characterize the acid-catalyzed synthesis of CB derivatives. This technique allows convenient, rapid isolation of rare substituted cucurbiturils, including hexacyclohexanocucurbit[6]uril and dodecamethylcucurbit[6]uril. [reaction: see text]  相似文献   
35.
3‐Bromomethcathinone (3‐BMC) and 3‐Fluoromethcathinone (3‐FMC) are two new designer drugs, which were seized in Israel during 2009 and had also appeared on the illicit drug market in Germany. These two compounds were sold via the Internet as so‐called “bath salts” or “plant feeders.” The aim of the present study was to identify for the first time the 3‐BMC and 3‐FMC Phase I and II metabolites in rat urine and human liver microsomes using GC–MS and LC–high‐resolution MS (HR‐MS) and to test for their detectability by established urine screening approaches using GC–MS or LC–MS. Furthermore, the human cytochrome‐P450 (CYP) isoenzymes responsible for the main metabolic steps were studied to highlight possible risks of consumption due to drug–drug interaction or genetic variations. For the first aim, rat urine samples were extracted after and without enzymatic cleavage of conjugates. The metabolites were separated and identified by GC–MS and by LC–HR‐MS. The main metabolic steps were N‐demethylation, reduction of the keto group to the corresponding alcohol, hydroxylation of the aromatic system and combinations of these steps. The elemental composition of the metabolites identified by GC–MS could be confirmed by LC–HR‐MS. Furthermore, corresponding Phase II metabolites were identified using the LC–HR‐MS approach. For both compounds, detection in rat urine was possible within the authors' systematic toxicological analysis using both GC–MS and LC–MSn after a suspected recreational users dose. Following CYP enzyme kinetic studies, CYP2B6 was the most relevant enzyme for both the N‐demethylation of 3‐BMC and 3‐FMC after in vitro–in vivo extrapolation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
36.
Lipidic cubic phases (LCPs) are used in areas ranging from membrane biology to biodevices. Because some membrane proteins are notoriously unstable at room temperature, and available LCPs undergo transformation to lamellar phases at low temperatures, development of stable low‐temperature LCPs for biophysical studies of membrane proteins is called for. Monodihydrosterculin (MDS) is a designer lipid based on monoolein (MO) with a configurationally restricted cyclopropyl ring replacing the olefin. Small‐angle X‐ray scattering (SAXS) analyses revealed a phase diagram for MDS lacking the high‐temperature, highly curved reverse hexagonal phase typical for MO, and extending the cubic phase boundary to lower temperature, thereby establishing the relationship between lipid molecular structure and mesophase behavior. The use of MDS as a new material for LCP‐based membrane protein crystallization at low temperature was demonstrated by crystallizing bacteriorhodopsin at 20 °C as well as 4 °C.  相似文献   
37.
Semithiobambusurils, which represent a new family of macrocyclic host molecules, have been prepared by a convenient, scalable synthesis. These new cavitands are double functional: they strongly bind a broad variety of anions in their interiors and metal ions at their sulfur‐edged portals. The solid‐state structure of semithiobambus[4]uril with HgCl2 demonstrates the ability of these compounds to form linear chains of coordination polymers with thiophillic metal ions. The crystal structure of semithiobambus[6]uril with tetraphenylphosphonium bromide exhibits the unique anion‐binding properties of the host cavity and the characteristics of the binding site.  相似文献   
38.
Low-barrier molecular rotary motors having rotaxane architecture can be constructed using a cucurbituril host and a polyyne guest serving as stator and rotator, respectively. The repulsive interaction between these components is supported by molecular mechanics calculations with model systems and experimentally verified by X-ray crystallography with several synthetic host-guest complexes, all suggesting that the diyne rod floats at the center of the macrocyclic host with no apparent van der Waals contacts between them. Further support for these interactions is suggested by microcalorimetry measurements.  相似文献   
39.
Supramolecular polymer co-assembly is a useful approach to modulate peptide nanostructures. However, the co-assembly scenario where one of the peptide building blocks simultaneously forms a hydrogel is yet to be studied. Herein, we investigate the co-assembly formation of diphenylalanine (FF), and Fmoc-diphenylalanine (FmocFF) within the 3D network of FmocFF hydrogel. The overlapping peptide sequence between the two building blocks leads to their co-assembly within the gel state modulating the nature of the FF crystals. We observe the formation of branched microcrystalline aggregates with an atypical curvature, in contrast to the FF assemblies obtained from aqueous solution. Optical microscopy reveal the sigmoidal kinetic growth profile of these aggregates. Microfluidics and ToF-SIMS experiments exhibit the presence of co-assembled structures of FF and FmocFF in the crystalline aggregates. Molecular dynamics simulation was used to decipher the mechanism of co-assembly formation.  相似文献   
40.
The mechanism of amyloid co-aggregation and its nucleation process are not fully understood in spite of extensive studies. Deciphering the interactions between proinflammatory S100A9 protein and Aβ42 peptide in Alzheimer''s disease is fundamental since inflammation plays a central role in the disease onset. Here we use innovative charge detection mass spectrometry (CDMS) together with biophysical techniques to provide mechanistic insight into the co-aggregation process and differentiate amyloid complexes at a single particle level. Combination of mass and charge distributions of amyloids together with reconstruction of the differences between them and detailed microscopy reveals that co-aggregation involves templating of S100A9 fibrils on the surface of Aβ42 amyloids. Kinetic analysis further corroborates that the surfaces available for the Aβ42 secondary nucleation are diminished due to the coating by S100A9 amyloids, while the binding of S100A9 to Aβ42 fibrils is validated by a microfluidic assay. We demonstrate that synergy between CDMS, microscopy, kinetic and microfluidic analyses opens new directions in interdisciplinary research.

Templating mechanism of S100A9 amyloids on Aβ fibrillar surfaces during amyloid co-aggregation process was revealed by synergy of biophysical methods including charge detection mass spectrometry, microscopy, kinetic and microfluidic analyses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号