首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   20篇
  国内免费   4篇
化学   263篇
晶体学   2篇
力学   53篇
数学   48篇
物理学   81篇
  2024年   1篇
  2023年   2篇
  2022年   19篇
  2021年   21篇
  2020年   22篇
  2019年   30篇
  2018年   32篇
  2017年   26篇
  2016年   18篇
  2015年   19篇
  2014年   31篇
  2013年   41篇
  2012年   46篇
  2011年   46篇
  2010年   20篇
  2009年   16篇
  2008年   13篇
  2007年   18篇
  2006年   7篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   1篇
  1996年   3篇
  1970年   1篇
  1968年   1篇
排序方式: 共有447条查询结果,搜索用时 187 毫秒
171.
Buoyancy-induced fluid flow, which is responsible for most forms of macro-segregation and channel-type segregates in castings, is not directly controllable. If left uncontrolled, natural convection will contribute to non-uniform distribution of alloy constituents and grain structure during solidification of a casting. Non-uniform distribution of chemical composition and physical structure in an alloy casting can significantly affect the reliability of mechanical components. Therefore, materials with acceptable defects can be produced only by trial-and-error and their acceptability is determined by costly inspections. We present a novel technique to control the formation of chimneys and resulting freckles in the mushy zone during the solidification of ammonium chloride that is cooled from below. This is done by placing metallic nucleators in particular arrangements on the bottom cooling plate. With this technique, freckles in a casting might be avoided and/or be forced to form where stresses are expected to be lower during use of the part.The objective of this study is to investigate the effects of the arrangement, spacing, and size of the nucleators on finger formation, plume structure, and the solidification process. Results showed that it is possible to obtain a relatively large area free of channel-segregates in a metal analog directionally solidified upward by placing nucleators in certain arrangements at the bottom of the casting. The outcomes of this study will serve as a baseline for subsequent investigations that will examine the solidification of binary alloys, and could be used to test and develop mathematical and numerical models.  相似文献   
172.
In this study, we investigated the impact of four different inflow generation methods used in large-eddy simulation on the spatially developing boundary-layer before a recirculation bubble is formed over a gently curved backward-facing step at a Reynolds number 13,700 based on the step height. The configuration under study is very challenging because the separation is caused by a weak adverse pressure gradient, thus making a very sensitive and reliable assessment for evaluating the different inflow conditions used. The first method is a precursor-based simulation in which the velocity data on a certain plane is recorded in a library and then used as the inlet condition for the primary simulation. The second method used is the random noise generation method. The third method is based on generation of turbulent spots which incorporates the distribution of Reynolds stress tensor, and the last one is the so-called rescaling/recycling method proposed by Lund and colleagues. All these methods are compared together in terms of separation and reattachment locations of the recirculation bubble. The flow structures are represented by qualitative criteria, and also streamwise Reynolds stresses and production of turbulent kinetic energy of the flow are assessed and compared together at different stations before and after separation to illuminate how the developing structures within the boundary-layer can affect the locations of separation and reattachment. Distribution of pressure coefficient for different methods showed that there is a relation between production of turbulent kinetic energy and favourable pressure gradient of each method before the separation occurs. Finally, spectra of pressure fluctuation revealed how each inflow condition influences the shedding-instability frequencies.  相似文献   
173.
In this paper, we describe a facile method for preparation of ZnSe quantum dots (QDs) using an inexpensive and biocompatible source of acetyl cysteine in aqueous media. The structural properties of the ZnSe QDs have been characterized using XRD, FT-IR, and TEM techniques. The optical properties of the as-prepared QDs were found to be size-dependent, due to the strong confinement regime at relatively low refluxing time. Effect of solution pH and refluxing temperature on absorption and emission characteristics of the ZnSe QDs was studied. The empirical effective mass approximation also reveals that, both solution pH and refluxing temperature parameters would effect on ZnSe QDs growth, and increase their size. However, the influence of the solution pH was found to be more prominent. Water-solubility, high emission intensity and sub-10 nm nanocrystals size are the most essential features that suggest our synthesized aqueous-based ZnSe QDs (with a very cost-effective and biocompatible capping agent) can be utilized for biological intentions.  相似文献   
174.
研究了边界表面受均布动压力作用的功能梯度(FGM)厚壁中空圆柱体,给出了其平面应变响应下的弹性动力学解.假设材料性能(除Poisson比外)随厚度按幂律函数变化.为了得到一个精确解,将动力径向位移分为准静力部分和动力部分,导出了每个部分的一个解析解.先由Euler方程得到准静力学部分的解,再由分离变量法和正交展开法得到动力学部分的解.在不同动荷载作用下,对不同的FGM中空圆柱体,画出径向位移和应力图,并对本方法的优点进行了讨论.该解析解适用于中空圆柱体各种组合的FGM,厚度可以是任意的,初始条件也可以是任意的,壁面上均匀分布着任意形式的动压力.  相似文献   
175.
Abstract

In this article, we investigated the effect of martensite morphology on the mechanical properties and formability of dual phase steels. At first, three heat treatment cycles were subjected to a low-carbon steel to produce ferrite–martensite microstructure with martensite morphology of blocky-shaped, continuous, and fibrous. Tensile tests were then carried out so as to study mechanical properties, particularly the strength and strain hardening behavior of dual phase steels. In order to study the formability of dual phase samples, Forming Limit Diagram was obtained experimentally and numerically. Experimental forming limit diagram was obtained using Nakazima forming test, while Finite Element Method was utilized to numerically predict the forming limit diagram. The results indicated that the dual phase samples with fibrous martensite morphology had the highest tensile properties and strain rate hardening out of the three different microstructures. Blocky-shaped martensite morphology, on the other hand, had the worst mechanical properties. The study of the strain hardening behavior of dual phase sample by Kocks–Mecking-type plots, evinced two stages of strain hardening for all specimens with different microstructures: stages III and IV. The forming limit diagram of dual phase steels also proved that samples with fibrous martensite morphology had the best formability compared to other two microstructures. The simulated forming limit diagram manifested that there is a good agreement between experimental results and those obtained by FEM.  相似文献   
176.
177.
The results of molecular dynamics (MD) simulations on transport process of CO2 and CH4 gases in poly(ether-b- amide) (PEBAX)/nanosilica membranes are discussed. The diffusion coefficients for CH4 and CO2 gases at 6 cases with different amounts of nanosilica loading in the simulation boxes are presented. The results show that diffusion coefficients for CO2 gas in all cases are larger than those for the CH4 one. Moreover 10% nanosilica loading case shows maximum effects on diffusion coefficients and improves them by more than 68% and 157% for CO2 and CH4 gases, respectively. Additionally, the results of 3-D Cartesian trajectories and displacements curves are presented and the jumping attempt of CO2 is significantly more than that of CH4. Due to the rubbery state of PEBAX membranes in ambient temperature, the results confirm that channel lifetimes are very short and then back diffusion is not observed for this polymer.  相似文献   
178.
A simple, efficient, eco-friendly, and cost-effective method has been developed for the synthesis of symmetrical bisthioglycolic acid derivatives by a one-pot reaction of aldehydes or ketones with thioglycolic acid under solvent- and catalyst-free conditions in excellent yields (87–97%). The advantages of this novel protocol include the excellent yields, operational simplicity, short reaction times, and the avoidance of the use of organic solvents and catalysts.  相似文献   
179.
Free convection from cubical air channel equipped with copper plate was taken into consideration in the presence of electrostatic field as the channel position was varied. The paper examines the artificial neural network capability in modeling and prediction of five output parameters for plate temperatures as affected with four input parameters of heat flux, applied voltage, the inclination angle of channel, and inlet ambient temperature. The proposed network’s performance was measured with increasing number of neurons in hidden layer. The best network structure was found 4-20-5 with Levenberg–Marquardt training algorithm and mean squared error of 0.06366. The mean relative error for all output cases were <2.9 %. The best coefficient of determination was resulted at 30 cm from channel entrance section to the amount of 0.9807. The discrepancies of the results are chiefly attributed to 90° channel inclination angle. The network was able to predict accurately temperature trend of airflow and plate with voltage, heat flux, and channel positions.  相似文献   
180.
An efficient and direct sulfonylation of aromatic compounds with sulfonic acids is described via mixed anhydrides in short reaction times using Tf2O in nitromethane at room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号