首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   3篇
  国内免费   3篇
化学   79篇
晶体学   1篇
力学   7篇
数学   40篇
物理学   44篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   7篇
  2012年   4篇
  2011年   5篇
  2010年   6篇
  2009年   4篇
  2008年   8篇
  2007年   9篇
  2006年   12篇
  2005年   13篇
  2004年   3篇
  2003年   12篇
  2002年   9篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1975年   3篇
  1974年   1篇
排序方式: 共有171条查询结果,搜索用时 78 毫秒
61.
The thermal stability of palladium-covered niobium, a composite used in hydrogen-tight membranes, is studied. Palladium is applied by the method of plasma sputtering. The thermal degradation of the coating is judged from a decrease in its ability to prevent niobium oxidation. It is found that the degree of oxidation of the samples heated in air at 693 K drops when the thickness of the coating increases in the range 2.5–1000.0 nm. The reason is heating-induced destructive modifications of the coating morphology, which are observed under a scanning electron microscope. The thicker the coating, the higher the temperature of onset of destruction. At temperatures above 873 K, the initially smooth continuous coating becomes highly porous and this porous layer does not change upon subsequent heating (up to 1273 K). Critical factors and possible mechanisms of thermal degradation of palladium coatings on hydrogen-tight composite membranes are discussed.  相似文献   
62.
Protein complexes that mediate secretion and adhesion are located on the plasma membrane of pancreatic β cells. Neuroligins and their binding partners, the neurexins, are among these complexes. β cell maturation and physiologically regulated insulin secretion, as a response to high levels of blood glucose, are dependent on their three-dimensional (3D) arrangement. Both insulin secretion and the proliferation rates of β cells dramatically increase when β cells are co-cultured with clusters of a member of the neuroligin family: NL-2. A membranal protein, such as NL-2, has very limited drugability owing to its low biostability and bioavailability. Thus, based on in silico modeling, a short NL-2 peptide (HSA-28), which was able to mimic NL-2-positive effects on β cells, was designed, as we described in previous publication. However, the peptide was active only as a cluster, created by the covering the maghemite (γ-Fe2O3)-based nanoparticles (NPs) with limited biocompatibility. In this brief communication, we will show that conjugation of HSA-28 to biocompatible hydrogel NPs exhibits an impressive protective effect on INS-1E β cells under oxidative stress and induces their proliferation rate via augmentation of PDX1 nuclear translocation. The diameter of coated by the peptide NPs was 206?±?63 nm (DLS) and 114?±?27 nm (cryo-TEM). This significant change in size can be explained by the very hydrophilic character of the proteinoid NPs, inducing adsorption of many water molecules on their surface, which are accounted only by the DLS. The ability of biocompatible hydrogel NPs to prevent apoptosis and increase β cell mass might be used for developing novel β cell protective therapies.
Graphical abstract Effect of covered by bioactive peptide NPs on PDX1 nuclei translocation.
  相似文献   
63.
The interesting unimolecular dissociation chemistry of dimethyl oxalate (DMO) ions, CH3O-C(=O)-C(=O)-OCH 3 ·+ , has been studied by vacuum ultraviolet photoionization and tandem mass spectrometry based experiments. The measured appearance energy (AE) for the generation of CH3O-C=O+ (10. 5 eV) is not compatible with a simple bond cleavage involving the cogeneration of the radical CH3O-C=O· whose calculated AE is 11 kcal/mol higher. However, because the CH3O-C=O· radical is thermodynamically less stable than its dissociation products CH3 · and CO2, by 19 kcal/mol, a two-step dissociation of ionized DMO into CH3O-C=O+ + CH 3 · + CO2 is energetically feasible. Collision induced dissociative ionization experiments clearly show that low energy DMO ions dissociate into CH3 · + CO2 without the intermediacy of CH3O-C=O·. Experiments using a charged collision chamber further indicate that CO2 is released first, followed by loss of CH3 · and not vice versa and a mechanism is proposed. The measured AE, which we assign to the two-step process, is 8 kcal/mol higher than the calculated value. This could be due to a competitive shift caused by a prominent low energy decarbonylation reaction yielding the hydrogen bridged radical cation CH2=O … H … O=C-OCH3 ·+. However, from metastable ion observations and AE measurements on deuterium labeled DMO ions, it follows that there is no competitive shift and that the elevated AE for the two-step process corresponds to the barrier for the first step, loss of CO2. Finally, neutralization-reionization experiments on ionized DMO and CH3O-C=O+ provide evidence for the existence of CH3O-C=O· as a kinetically stable radical.  相似文献   
64.
Rate constants for the retro-Diels-Alder dissociation of 1,2,3,6-tetrahydropyridine, to 1,3-butadiene and methanimine, have been measured over 650–1450 K. To cover this range, three separate techniques were used at three laboratories: laser schlieren and single pulse shock tube methods, and a comparative rate flow system technique. The derived rate constants are extrapolated to the high-pressure limit with an RRKM model parameterized to fit the falloff observed in the laser-schlieren measurements. The resulting high-pressure rate constants show a reduction in activation energy of about 10 kcal/mol, comparing the isoelectronic cyclohexene, but little change in A-factor. There is an apparent increase in activation energy of 4 kcal/mol over the temperature range of these experiments, which is just outside probable error. Such a rise in activation energy is in marked contrast to the drop usually seen in simple bond fission, and may reflect a change from a concerted to a stepwise, biradical mechanism at high temperatures.  相似文献   
65.
Time-resolved appearance energies and metastable peak shapes were determined by trapped-ion mass spectrometry (TIMS) for the unimolecular dissociation of aniline cations. The long-time (milliseconds) appearance energy limit, AE(C5H+6) = 11.26 = 0.2 eV. suggests the formation at threshold energies of the cyclopentadienyl cation with neutral hydrogen isocyanide. HNC.  相似文献   
66.
67.
68.
Lead sulfide (PbS) nanocrystals (NCs), embedded in amorphous zirconia sol-gel film with different PbS mole concentration (5–30%), were grown at temperature, ranging from 200°C to 350°C. The size of PbS NCs was determined by TEM and by blue shift of the absorption edge. The size increased with an increase of the synthesis temperature and PbS mole concentration. The optical and electrical properties of various sizes of PbS NCs in zirconia film are investigated utilizing absorption, photoluminescence (PL) and current-voltage measurement. The PL spectra were Stokes shifted from the corresponding absorption edge by about 0.5 eV. The latter can be associated with recombination process from surface state. The electrical properties were investigated by the deposition of the PbS NCs-zirconia films on ITO/glass substrate, followed by their coverage with gold contact. The current-voltage characteristics depend on the PbS NCs size and exhibits nonlinear nearly symmetric curve, associated with the space-charge limited current or the tunneling of carriers through the nanocrystalline film.  相似文献   
69.
70.
The elimination of water from the carboxyl group of protonated diglycine has been investigated by density functional theory calculations. The resulting structure is identical to the b(2) ion formed in the mass spectrometric fragmentation of protonated peptides (therefore named "b2" in this study). The most stable geometry of the fragment ion ("b2") is an O-protonated diketopiperazine. However, its formation is kinetically disfavored as it requires a free energy of 58.2 kcal/mol. The experimentally observed N-protonated oxazolone is 3.0 kcal/mol less stable. The lowest energy pathway for the formation of the "b2" ion requires a free energy of 37.5 kcal/mol and involves the proton transfer from the amide oxygen of protonated diglycine to the hydroxyl oxygen. Fragmentation initiated by proton transfer from the terminal nitrogen has also a comparable free energy of activation (39.4 kcal/mol). Proton transfer initiating the fragmentation, from the highly basic terminal nitrogen or amide oxygen to the less basic hydroxyl oxygen is feasible at energies reached in usual mass spectrometric experiments. Amide N-protonated diglycine structures are precursors of mainly y(1) ions rather than "b2" ions. In the lowest energy fragmentation channels, proton transfer to the hydroxylic oxygen, bond breaking and formation of an oxazolone ring occur concertedly but asynchronously. Proton transfer to hydroxyl oxygen and cleavage of the corresponding C-O bond take place at the early stages of the fragmentation step, while ring closure to form an oxazolone geometry occurs at the later stages of the transition. The experimentally observed low kinetic energy release is expected to be due to the existence of a strongly hydrogen bonded protonated oxazolone-water complex in the exit channel. Whereas the threshold energy for "b2" ion formation (37.1 kcal/mol) is lower than for the y(1) ion (38.4 kcal/mol), the former requires a tight transition state with an activation entropy, DeltaS++ = -1.2 cal/mol.K and the latter has a loose transition state with DeltaS++ = +8.8 cal/mol.K. This leads to y(1) being the major fragment ion over a wide energy range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号