首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1526篇
  免费   37篇
  国内免费   5篇
化学   1140篇
晶体学   13篇
力学   19篇
数学   215篇
物理学   181篇
  2022年   11篇
  2021年   16篇
  2020年   25篇
  2019年   14篇
  2018年   13篇
  2017年   8篇
  2016年   20篇
  2015年   25篇
  2014年   35篇
  2013年   60篇
  2012年   84篇
  2011年   88篇
  2010年   57篇
  2009年   38篇
  2008年   70篇
  2007年   63篇
  2006年   72篇
  2005年   84篇
  2004年   70篇
  2003年   57篇
  2002年   55篇
  2001年   18篇
  2000年   16篇
  1999年   16篇
  1998年   14篇
  1997年   13篇
  1996年   11篇
  1995年   14篇
  1994年   17篇
  1993年   31篇
  1992年   19篇
  1991年   16篇
  1990年   19篇
  1988年   9篇
  1987年   10篇
  1986年   13篇
  1984年   13篇
  1983年   18篇
  1982年   24篇
  1981年   15篇
  1980年   19篇
  1979年   21篇
  1978年   16篇
  1977年   10篇
  1976年   15篇
  1975年   10篇
  1974年   15篇
  1973年   16篇
  1970年   9篇
  1882年   7篇
排序方式: 共有1568条查询结果,搜索用时 15 毫秒
81.
Abstract—In the presence of Mg2+ and adenosine triphosphate (ATP), a rapid. light-induced, light-scattering transient is observed from bovine rod outer segments (ROS). This light-scattering transient we have labelled 'A'. Ca2+ cannot replace Mg2+. nor can guanosine triphosphate (GTP) replace ATP. 'A' is observed at ATP concentrations as low as a few μM.
The half-time of 'A', 60 ms at 20° and 20 ms at 37°, is consistent with a process possibly involved in visual transduction.
'A' has the action spectrum of rhodopsin bleaching and its amplitude is strictly proportional to the fraction of rhodopsin bleached per flash. 'A' can be regenerated by 11- cis retinal.
Inhibition studics with ATP analogues, which cannot be hydrolysed and fail to evoke an 'A' response, reveal that an ATP hydrolysis process has to precede illumination in order for 'A' to occur.
On the basis of the above findings. it is proposed that there is a Mg2+ dependent ATPase in ROS that allows the disk membrane to assume a new membrane state which, upon illumination, is altered. giving rise to the structural phenomenon monitored as light-scattering transient 'A'.  相似文献   
82.
The behavior of water in close proximity to other materials under ambient conditions is of great significance due to its importance in a broad range of daily applications and scientific research. The structure and dynamics of water at an interface or in a nanopore are often significantly different from those of its bulk counterpart. Until recently, experimental access to these interfacial water structures was difficult to realize. The advent of two-dimensional materials, especially graphene, and the availability of various scanning probe microscopies were instrumental to visualize, characterize and provide fundamental knowledge of confined water. This review article summarizes the recent experimental and theoretical progress in a better understanding of water confined between layered Van der Waals materials. These results reveal that the structure and stability of the hydrogen bonded networks are determined by the elegant balance between water-surface and water-water interactions. The water-surface interactions often lead to structures that differ significantly from the conventional bilayer model of natural ice. Here, we review the current knowledge of water adsorption in different environments and intercalation within various confinements. In addition, we extend this review to cover the influence of interfacial water on the two-dimensional material cover and summarize the use of these systems in potential novel applications. Finally, we discuss emerged issues and identify some flaws in the present understanding.  相似文献   
83.
84.
Host–guest complexes are formed by the creation of multiple noncovalent bonds between a large molecule (the host) and smaller molecule(s) or ion(s) (the guest(s)). Ion‐mobility separation coupled with mass spectrometry nowadays represents an ideal tool to assess whether the host–guest complexes, when transferred to the gas phase upon electrospray ionization, possess an exclusion or inclusion nature. Nevertheless, the influence of the solution conditions on the nature of the observed gas‐phase ions is often not considered. In the specific case of inclusion complexes, kinetic considerations must be taken into account beside thermodynamics; the guest ingression within the host cavity can be characterized by slow kinetics, which makes the complexation reaction kinetically driven on the timescale of the experiment. This is particularly the case for the cucurbituril family of macrocyclic host molecules. Herein, we selected para‐phenylenediamine and cucurbit[6]uril as a model system to demonstrate, by means of ion mobility and collision‐induced dissociation measurements, that the inclusion/exclusion topology ratio varies as a function of the equilibration time in solution prior to the electrospray process.  相似文献   
85.
Low-molecular weight linear poly(glycidyl ether)s are typically synthesized via the “classical,” oxy-anionic ring-opening polymerization (ROP) of glycidyl ether monomers at elevated temperatures. To reduce reaction times, a fast process was developed to synthesize oligo(glycidyl ether)s (OGEs) in bulk at a gram-scale utilizing microwave heating. Well-defined thermoresponsive copolymers comprising glycidyl methyl ether and ethyl glycidyl ether with molecular weights of up to 3 kDa were synthesized via microwave-assisted ROP with reaction times of approximately 10 min. The fast reaction kinetics were attributed to the rapid and uniform heating and high temperatures reached during the reaction. Consequently, no significant microwave-specific acceleration of the oxy-anionic ROP was observed. The temperature-triggered phase transition of the OGEs in aqueous solution revealed cloud point temperatures that are highly dependent on the OGE molecular weight, concentration, and comonomer composition, which extends previously reported data. Furthermore, oligo(glycidyl ether) acrylates (OGEAs) with reactive, functional end groups were directly accessible via in situ quenching of the anionic, microwave-assisted ROP with acrylic acid chloride. The obtained thermoresponsive OGEA macromonomers represent a promising material for the functionalization of surfaces via radical grafting methods to obtain functional, thermoresponsive coatings with potential application in cell culture. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2496–2504  相似文献   
86.
87.
Using insights from the forest ecology literature, we analyze the effect of injured trees on stand composition and carbon stored in above‐ground biomass and the implications for forest management decisions. Results from a Faustmann model with data for a tropical forest on Kalimantan show that up to 50% of the basal area of the stand before harvest can consist of injured trees. Considering injured trees leads to an increase in the amount of carbon in above‐ground biomass of up to 165%. These effects are larger under reduced impact logging than under conventional logging. The effects on land expectation value and cutting cycle are relatively small. The results suggest that considering injured trees in models for tropical forest management is important for the correct assessment of the potential of financial programs to store carbon and conserve forest ecosystem services in managed tropical forests, such as reducing emissions from deforestation and forest degradation and payment for ecosystem services. Recommendations for Resource Managers
  • Considering the role of injured trees is important for managing tropical forests
  • These trees can cover up to 50% of basal area and contain more than 50% of the carbon stored in above‐ground biomass
  • Reduced impact logging leads to a larger basal area of injured trees and more carbon stored in injured trees than conventional logging
  • Injured trees play an important role when assessing the potential for carbon storage in the context of payment for forest ecosystem services.
  相似文献   
88.
89.
90.
The syntheses of three bis(benzo[b]thiophen‐2‐yl)methane derivatives, namely bis(benzo[b]thiophen‐2‐yl)methanone, C17H10OS2, (I), 1,1‐bis(benzo[b]thiophen‐2‐yl)‐3‐(trimethylsilyl)prop‐2‐yn‐1‐ol, C22H20OS2Si, (II), and 1,1‐bis(benzo[b]thiophen‐2‐yl)prop‐2‐yn‐1‐ol, C19H12OS2, (III), are described and their crystal structures discussed comparatively. The conformation of ketone (I) and the respective analogues are rather similar for most of the compounds compared. This is true for the interplanar angles, the Caryl—Cbridge—Caryl angles and the dihedral angles. The best resemblance is found for a bioisotere of (I), viz. 2,2′‐dinaphthyl ketone, (VII). By way of interest, the crystal packings also reveal similarities between (I) and (VII). In (I), the edge‐to‐face interactions seen between two napthyl residues in (VII) are substituted by S…π contacts between the benzo[b]thiophen‐2‐yl units in (I). In the structures of the bis(benzo[b]thiophen‐2‐yl)methanols, i.e. (II) and (III), the interplanar angles are also quite similar compared with analogues and related active pharmaceutical ingredients (APIs) containing the dithiophen‐2‐ylmethane scaffold, though the dihedral angles show a larger variability and produce unsymmetrical molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号