首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2738篇
  免费   99篇
  国内免费   19篇
化学   1908篇
晶体学   20篇
力学   57篇
数学   486篇
物理学   385篇
  2023年   24篇
  2022年   38篇
  2021年   100篇
  2020年   61篇
  2019年   64篇
  2018年   59篇
  2017年   50篇
  2016年   104篇
  2015年   86篇
  2014年   106篇
  2013年   174篇
  2012年   173篇
  2011年   239篇
  2010年   147篇
  2009年   123篇
  2008年   175篇
  2007年   182篇
  2006年   135篇
  2005年   130篇
  2004年   115篇
  2003年   85篇
  2002年   82篇
  2001年   33篇
  2000年   26篇
  1999年   25篇
  1998年   17篇
  1997年   21篇
  1996年   21篇
  1995年   18篇
  1994年   25篇
  1993年   20篇
  1992年   14篇
  1991年   13篇
  1990年   14篇
  1989年   11篇
  1988年   10篇
  1987年   11篇
  1986年   10篇
  1985年   14篇
  1984年   11篇
  1983年   14篇
  1982年   19篇
  1981年   12篇
  1980年   4篇
  1979年   6篇
  1978年   7篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1912年   2篇
排序方式: 共有2856条查询结果,搜索用时 359 毫秒
961.
This paper reports on an evaluation of the suitability of a novel sample collection approach, volumetric absorptive micro-sampling (VAMS), in the context of the determination of ultra-trace concentrations of prosthesis-related metals (Al, Ti, V, Co, Cr, Ni, Sr and Zr) in whole blood. In a first phase, a simple dilute-and-shoot approach (100-fold dilution) followed by tandem ICP – mass spectrometry (ICP-MS/MS) analysis was developed for the accurate and sensitive determination of the target elements. The ICP-MS/MS method relies on the use of mass shift reactions proceeding when pressurizing the collision/reaction cell (CRC) with CH3F/He for dealing with spectral overlap. Limits of detection (LoDs) between 0.3 and 30 ng L−1 were attained in a multi-element approach. The accuracy of the method was demonstrated via successful analysis of the reference materials Seronorm Whole Blood Levels 1 and 3, and real venous blood samples, spiked with the target elements at different concentration levels (5–50 μg L−1). Although the implementation of VAMS devices introduced contamination problems for Al, Cr and Ni, VAMS followed by ICP-MS/MS analysis shows potential for future real-life routine applications when assessing levels of Ti, V, Co, Sr and/or Zr.  相似文献   
962.
The increasing demand of analytical information related to inorganic engineered nanomaterials requires the adaptation of existing techniques and methods, or the development of new ones. The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of analytes, involving both chemical (composition, mass and number concentration) and physical information (e.g. size, shape, aggregation). Moreover, information about the species derived from the nanoparticles themselves and their transformations must also be supplied. Whereas techniques commonly used for nanoparticle characterization, such as light scattering techniques, show serious limitations when applied to complex samples, other well-established techniques, like electron microscopy and atomic spectrometry, can provide useful information in most cases. Furthermore, separation techniques, including flow field flow fractionation, capillary electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly hyphenated to inductively coupled plasma mass spectrometry as element specific detector. Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are in their early stages, but they are very promising considering their portability and simplicity. Although the field is in continuous evolution, at this moment it is moving from proofs-of-concept in simple matrices to methods dealing with matrices of higher complexity and relevant analyte concentrations. To achieve this goal, sample preparation methods are essential to manage such complex situations. Apart from size fractionation methods, matrix digestion, extraction and concentration methods capable of preserving the nature of the nanoparticles are being developed. This review presents and discusses the state-of-the-art analytical techniques and sample preparation methods suitable for dealing with complex samples. Single- and multi-method approaches applied to solve the nanometrological challenges posed by a variety of stakeholders are also presented.  相似文献   
963.
The electrochemical oxidation of fipronil is investigated on unmodified and multi-walled carbon-nanotube (MWCNT)-modified glassy carbon electrodes (GCEs), and its amperometric determination using batch injection analysis (BIA) is demonstrated. An oxidation peak was observed at 1.5 V in a 0.1 mol L?1 HClO4/acetone solution (50:50, v/v) on both surfaces. Although MWCNT-modified GCE provided greater sensitivity, the unmodified GCE showed low RSD value, wider linear range, and reduced adsorption of fipronil or its oxidized products on the electrode surface. A detection limit of 4.7 μmol L?1 and linear range of 25–300 μmol L?1 were obtained using a bare GCE. The method was applied in veterinary formulations with results in agreement with those obtained by high-performance liquid chromatography.  相似文献   
964.
In this work, the electrocatalytical properties and kinetic characteristics of new electrodes modified with Pt nanoparticles (PtNPs) and three generations of ferrocene functionalized dendrimers have been investigated as new acetaminophen amperometric sensors. The catalytic synergy of PtNPs with the ferrocene groups is discussed in relation to the ferrocenyl dendrimer generation and their properties. The modified electrodes show excellent catalytic responses toward the oxidation of acetaminophen, with good reproducibility. The overpotential for oxidation of acetaminophen at pH 7 is decreased, and the current response significantly enhanced. The best dendrimer/PtNPs/Pt electrode shows several wide linear concentration ranges for the acetaminophen oxidation from 0 to beyond 17 mM. At 0.5 V vs. SCE, the first linear range extends from 0 to 100 μM (y = 0.0131x ? 0.0028; R 2 = 0.9996) and the last from 10 mM to at least 17 mM (y = 0.0024x + 26.6; R 2 = 0.9977). This fact turns the developed acetaminophen sensor in the device with the widest application range. In addition, the sensor allows measuring acetaminophen in the presence of interfering substances as glucose, dopamine, uric acid, and ascorbic acid, and it has been successfully applied to the determination of acetaminophen in three pharmaceutical formulations.  相似文献   
965.
Computational fluid dynamics (CFD) is used to study the gas–particle heat transfer in gas‐phase olefin polymerizations. Particularly, the effects of particle rotation on the gas–particle heat transfer coefficient and internal particle temperatures are evaluated, showing that particle rotation can exert a significant impact on observed temperature profiles, so that this effect should not be neglected during detailed CFD process simulations. As a consequence, particle rotation can lead to particle cooling and development of spherical gradient symmetry, validating the use of simpler modeling schemes that are based on reaction–diffusion in symmetrical spherical geometry.

  相似文献   

966.
Panose is a trisaccharide constituted by a maltose molecule bonded to a glucose molecule by an α-1,6-glycosidic bond. This trisaccharide has potential to be used in the food industry as a noncariogenic sweetener, as the oral flora does not ferment it. Panose can also be considered prebiotic for stimulating the growth of benefic microorganisms, such as lactobacillus and bidifidobacteria, and for inhibiting the growth of undesired microorganisms such as E. coli and Samonella. In this paper, the production of panose by enzymatic synthesis in a batch and a fed-batch reactor was optimized using a mathematical model developed to simulate the process. Results show that optimum production is obtained in a fed-batch process with an optimum production of 11.23 g/l h of panose, which is 51.5% higher than production with batch reactor.  相似文献   
967.
Distillers dried grain with solubles (DDGS) is the major coproduct produced at a dry grind ethanol facility. Currently, it is sold primarily as a ruminant animal feed. DDGS is low cost and relatively high in protein and fiber contents. In this study, DDGS was investigated as carbon source for extracellular hydrolytic enzyme production. Two filamentous fungi, noted for their high cellulolytic and hemicellulolytic enzyme titers, were grown on DDGS: Trichoderma reesei Rut C-30 and Asper gillus niger NRRL 2001. DDGS was either used as delivered from the plant (untreated) or after being pretreated with hot water. Both microorganisms secreted a broad range of enzymes when grown on DDGS. Higher xylanase titers were obtained when cultured on hot water DDGS compared with growth on untreated DDGS. Maximum xylanase titers were produced in 4 d for A. niger and 8 d for T. reesei in shake flask cultures. Larger amounts of enzymes were produced in bioreactors (5 L) either equipped with Rushton (for T. reesei) or updraft marine impellers (A. niger). Initial production titers were lower for bioreactor than for flask cultures, especially for T. reesei cultures. Improvement of enzyme titers were obtained using fed-batch feeding schemes.  相似文献   
968.
969.
A new fiber for solid-phase microextraction (SPME) employing a metallic support coated with an inorganic material is proposed. A nitinol alloy (NiTi) was used as the support material due to its super elasticity and shape memory properties. Zirconium oxide (ZrO2) was electrodeposited onto NiTi using chronoamperometry. The surface characteristics and morphology of the coated and uncoated support were evaluated through scanning electronic microscopy and dispersive energy microanalysis. This assembly was applied in the extraction of three halophenols from aqueous samples. A multivariate approach was used for optimization of the variables involved in the system. The Doehlert matrix was used for evaluation of the best derivatization conditions and a Box-Behnken design to obtain the best extraction conditions. In order to investigate the repeatability, one fiber was used for six extraction tests under similar conditions and the relative standard deviations (R.S.D.) were lower than 12.5%. Detection limits were lower than 0.30 ng mL−1. Correlation coefficients were higher than 0.997. Extraction efficiency of the NiTi-ZrO2 fiber was similar to a PDMS 7 μm commercial fiber, even though it had a lower coating thickness of 1.35 μm. Considering the amount extracted per unit volume, the NiTi-ZrO2 fiber had a better extraction profile when compared to commercial fibers. The new SPME fiber has a lifetime of over 500 extractions. Thus, it is a promising alternative for low-cost analysis, as the proposed fiber is robust, and easily and inexpensively prepared.  相似文献   
970.
In this work we report a novel methodology that is able to predict how energy transfer transition probability density functions [P(E',E)] change with the maximum impact parameter (bmax) used in trajectory calculations (TC's). The method assumes that P(E',E) can be described by a sum of exponential functions and that all the trajectories with an initial impact parameter beyond a certain critical value will contribute only to the elastic peak [P(E',E) for E'=E]. This approach is applied to H2O-H2O collisions at different initial vibrational energies of the excited molecules and temperatures of bath gas. The results show that it is possible to reproduce with high accuracy the whole P(E',E) obtained from a given bmax, using the results of TC's performed at another bmax. The new methodology also leads us to propose a new criterion to choose the value of bmax.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号