首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   6篇
化学   67篇
数学   18篇
物理学   19篇
  2023年   4篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   9篇
  2011年   5篇
  2010年   11篇
  2009年   8篇
  2008年   7篇
  2007年   11篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1996年   3篇
  1994年   1篇
  1972年   2篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
61.
As derived by Max Planck in 1903 from dispersion theory, Beer's law has a fundamental limitation. The concentration dependence of absorbance can deviate from linearity, even in the absence of any interactions or instrumental nonlinearities. Integrated absorbance, not peak absorbance, depends linearly on concentration. The numerical integration of the absorbance leads to maximum deviations from linearity of less than 0.1 %. This deviation is a consequence of a sum rule that was derived from the Kramers-Kronig relations at a time when the fundamental limitation of Beer's law was no longer mentioned in the literature. This sum rule also links concentration to (classical) oscillator strengths and thereby enables the use of dispersion analysis to determine the concentration directly from transmittance and reflectance measurements. Thus, concentration analysis of complex samples, such as layered and/or anisotropic materials, in which Beer's law cannot be applied, can be achieved using dispersion analysis.  相似文献   
62.
The signal enhancement provided by the hyperpolarization of nuclear spins of biological molecules is a highly promising technique for diagnostic imaging. To date, most 13C-contrast agents had to be polarized in an extra, complex or cost intensive polarizer. Recently, the in situ hyperpolarization of a 13C contrast agent to >20 % was demonstrated without a polarizer but within the bore of an MRI system. This approach addresses some of the challenges of MRI with hyperpolarized tracers, i. e. elevated cost, long production times, and loss of polarization during transfer to the detection site. Here, we demonstrate the first hyperpolarization of a biomolecule in aqueous solution in the bore of an MRI at field strength of 7 T within seconds. The 13C nucleus of 1-13C, 2,3-2H2-succinate was polarized to 11 % corresponding to a signal enhancement of approximately 18.000. Interesting effects during the process of the hydrogenation reaction which lead to a significant loss of polarization have been observed.  相似文献   
63.
A monodisperse alcosol containing 0.1 wt. % 15 nm gold particles was subjected to controlled flow through a metal capillary exposed to an electric field at the ambient temperature to generate an electrohydrodynamic jet, which subsequently disintegrated into droplets. A silicon substrate was used to collect the droplets and prepare gold films. By varying the deposition time, we have prepared gold films in the thickness range of ∼500–∼ 2000 nm in a maximum spray time of 450 s. This is a significant achievement considering the initial concentration of gold and the spray time involved. The characteristics of the jet, droplets and films prepared were evaluated using advanced analytical techniques. PACS 81.15.Rs; 81.15.-z; 81.07.-b; 81.20.-n; 68.55.jd  相似文献   
64.
Zusammenfassung Die Fallstudie behandelt das Problem der Dimensionierung der verschiedenen Teile einer sehr komplexen Anlage für mehrstufige Produktion. Die Programmierung erfolgte in FORTRAN. Anhand der Fallstudie werden einige wesentliche Punkte herausgearbeitet, die für den Erfolg von Simulationsprojekten wesentlich sind, nämlich: klare Zielsetzung, Simulation von Teilbereichen, so daß in kürzester Zeit Resultate vorliegen.
Summary The case-study deals with the problem of the size of various parts of a very complex plant lay-out for multi-step production. The programming was done in FORTAN. Based on the case-study a few points were worked out which are essential for the success of simulation-projects, to wit: clear statement of purpose; simulation of partial scopes, which produce short-term results.
  相似文献   
65.
A titanium dioxide precursor sol flowing through a needle at a flow rate of 10-10 m3 s-1 was subjected to an electric field of 4.5 kV to generate droplets in the size range 0.3–6 μm. The droplets were collected on a silicon substrate to form uniformly thick, dense films. Raman spectroscopy, X-ray diffraction, field emission scanning electron microscopy and UV/Vis spectroscopy were used to characterize as-deposited and annealed films. Raman spectra show the annealed films were anatase phase with annealing converting it to the rutile phase. The energy bandgap of the titanium dioxide film annealed to 500 °C shows an indirect bandgap energy of 3.50 eV and a direct bandgap energy of 3.95 eV. PACS 81.15.Rs; 81.07.-b; 78.20.-e; 78.30.-j; 78.67.-n; 78.70.ck  相似文献   
66.
Dehydropolymerisation of methylamine borane (H3B⋅NMeH2) using the well-known iron amido complex [(PNP)Fe(H)(CO)] (PNP=N(CH2CH2PiPr2)2) ( 1 ) gives poly(aminoborane)s by a chain-growth mechanism. In toluene, rapid dehydrogenation of H3B⋅NMeH2 following first-order behaviour as a limiting case of a more general underlying Michaelis–Menten kinetics is observed, forming aminoborane H2B=NMeH, which selectively couples to give high-molecular-weight poly(aminoborane)s (H2BNMeH)n and only traces of borazine (HBNMe)3 by depolymerisation after full conversion. Based on a series of comparative experiments using structurally related Fe catalysts and dimethylamine borane (H3B⋅NMe2H) polymer formation is proposed to occur by nucleophilic chain growth as reported earlier computationally and experimentally. A silyl functionalised primary borane H3B⋅N(CH2SiMe3)H2 was studied in homo- and co-dehydropolymerisation reactions to give the first examples for Si containing poly(aminoborane)s.  相似文献   
67.
Academic and industrial research on nanofibres is an area of increasing global interest, as seen in the continuously multiplying number of research papers and patents and the broadening range of chemical, medical, electrical and environmental applications. This in turn expands the size of the market opportunity and is reflected in the significant rise of entrepreneurial activities and investments in the field. Electrospinning is probably the most researched top-down method to form nanofibres from a remarkable range of organic and inorganic materials. It is well known and discussed in many comprehensive studies, so why this review? As we read about yet another "novel" method producing multifunctional nanomaterials in grams or milligrams in the laboratory, there is hardly any research addressing how these methods can be safely, consistently and cost-effectively up-scaled. Despite two decades of governmental and private investment, the productivity of nanofibre forming methods is still struggling to meet the increasing demand. This hinders the further integration of nanofibres into practical large-scale applications and limits current uses to niche-markets. Looking into history, this large gap between supply and demand of synthetic fibres was seen and addressed in conventional textile production a century ago. The remarkable achievement was accomplished via extensive collaborative research between academia and industry, applying ingenious solutions and technological convergence from polymer chemistry, physical chemistry, materials science and engineering disciplines. Looking into the present, current advances in electrospinning and nanofibre production are showing similar interdisciplinary technological convergence, and knowledge of industrial textile processing is being combined with new developments in nanofibre forming methods. Moreover, many important parameters in electrospinning and nanofibre spinning methods overlap parameters extensively studied in industrial fibre processing. Thus, this review combines interdisciplinary knowledge from the academia and industry to facilitate technological convergence and offers insight for upscaling electrospinning and nanofibre production. It will examine advances in electrospinning within a framework of large-scale fibre production as well as alternative nanofibre forming methods, providing a comprehensive comparison of conventional and contemporary fibre forming technologies. This study intends to stimulate interest in addressing the issue of scale-up alongside novel developments and applications in nanofibre research.  相似文献   
68.
1‐Butyl‐4‐methylpyridinium hexachloridotantalate(V), [BMPy][TaCl6] ( 1 ), tetrakis(1‐butyl‐4‐methylpyridinium) bis(hexachloridotantalate(V) (μ‐oxido)‐decachloridotantalate(V), [BMPy]4[(TaCl6)2(Ta2OCl10)] ( 2 ), and bis(1‐ethyl‐3‐methylimidazolium)‐(μ‐oxido)‐decachloridoditantalate(V), [EMIm]2[Ta2OCl10] ( 3 ) were synthesized and characterized by single‐crystal X‐ray diffraction and vibrational spectroscopy. Compounds 1 and 3 crystallize in the monoclinic space group P21/c (no. 14), whereas compound 2 crystallizes in the triclinic space group P (no. 2). All compounds are built up by the mentioned bulky organic cations and octahedral [TaCl6] respective linear [Ta2OCl10]2– anions. Coulomb interactions are dominant between the ionic species. FT‐IR and FT‐Raman spectra were recorded and interpreted, especially with respect to the inorganic species [TaCl6] (Oh) and [Ta2OCl10]2– (Ci symmetry, approximately D4h). The melting temperatures of compounds 1 – 3 are given.  相似文献   
69.
Herein the syntheses of three novel ligands, in which an azaheterocycle is connected with a thiazole subunit: 4‐methoxy‐5‐methyl‐2‐pyridine‐2‐yl‐1,3‐thiazole ( 1 ), 4‐methoxy‐5‐methyl‐2‐pyrimidine‐2‐yl‐1,3‐thiazole ( 2 ) and 4‐methoxy‐5‐phenyl‐2‐pyridine‐2‐yl‐1,3‐thiazole ( 3 ) are reported. Because these ligands are cyclic versions of 1,4‐diazadienes, they offer good prerequisites for the synthesis of metal complexes and were employed as chelating ligands. Three novel heteroleptic cationic complexes of the type Ru(bpy)2( L ), with bpy = 2,2′‐bipyridine were successfully synthesised. The RuII complexes as well as the ligands were characterised by means of mass spectrometry, NMR, UV/Vis and IR spectroscopy and elemental analysis. Furthermore, an X‐ray structure of Ru(bpy)2 2 (PF6), as far as we know the first example where a thiazole is directly connected to a RuII core, is presented in this paper.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号