首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   4篇
化学   67篇
数学   18篇
物理学   19篇
  2023年   4篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   9篇
  2011年   5篇
  2010年   11篇
  2009年   8篇
  2008年   7篇
  2007年   11篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1996年   3篇
  1994年   1篇
  1972年   2篇
排序方式: 共有104条查询结果,搜索用时 6 毫秒
101.
The use of fluorescence techniques has an enormous impact on various research fields including imaging, biochemical assays, DNA-sequencing and medical technologies. This has been facilitated by the development of numerous commercial dyes with optimized photophysical and chemical properties. Often, however, information about the chemical structures of dyes and the attached linkers used for bioconjugation remain a well-kept secret. This can lead to problems for research applications where knowledge of the dye structure is necessary to predict or understand (unwanted) dye-target interactions, or to establish structural models of the dye-target complex. Using a combination of optical spectroscopy, mass spectrometry, NMR spectroscopy and molecular dynamics simulations, we here investigate the molecular structures and spectroscopic properties of dyes from the Alexa Fluor (Alexa Fluor 555 and 647) and AF series (AF555, AF647, AFD647). Based on available data and published structures of the AF and Cy dyes, we propose a structure for Alexa Fluor 555 and refine that of AF555. We also resolve conflicting reports on the linker composition of Alexa Fluor 647 maleimide. We also conducted a comprehensive comparison between Alexa Fluor and AF dyes by continuous-wave absorption and emission spectroscopy, quantum yield determination, fluorescence lifetime and anisotropy spectroscopy of free and protein-attached dyes. All these data support the idea that Alexa Fluor and AF dyes have a cyanine core and are a derivative of Cy3 and Cy5. In addition, we compared Alexa Fluor 555 and Alexa Fluor 647 to their structural homologs AF555 and AF(D)647 in single-molecule FRET applications. Both pairs showed excellent performance in solution-based smFRET experiments using alternating laser excitation. Minor differences in apparent dye-protein interactions were investigated by molecular dynamics simulations. Our findings clearly demonstrate that the AF-fluorophores are an attractive alternative to Alexa- and Cy-dyes in smFRET studies or other fluorescence applications.  相似文献   
102.
Diaryl‐substituted triazenides Ar(Ar′)N3HgX [Ar/Ar′ = Dmp/Mph, X = Cl ( 2a ), Br ( 3a ), I ( 4a ); Ar/Ar′ = Dmp/Tph, X = Cl ( 2b ), I ( 4b ) with Mph = 2‐MesC6H4, Mes = 2,4,6‐Me3C6H2, Tph = 2′,4′,6′‐triisopropylbiphenyl‐2‐yl and Dmp = 2,6‐Mes2C6H3] were synthesized by salt‐metathesis reactions in ethyl ether from the readily available starting materials Ar(Ar′)N3Li and HgX2. These compounds may be used for redox‐transmetallation reactions with rare‐earth or alkaline earth metals. Thus, reaction of 4b or 2b with magnesium or ytterbium in tetrahydrofuran afforded the triazenides Dmp(Tph)N3MX(thf) ( 5b : M = Mg, X = I; 6b : M = Yb, X = Cl) in good yield. All new compounds were characterized by melting point, 1H and 13C NMR spectroscopy and for selected species by IR spectroscopy or mass spectrometry. In addition, the solid‐state structures of triazenides 2a , 2b , 3a , 4b , 5b and 6b were investigated by single‐crystal X‐ray diffraction.  相似文献   
103.
A series of isotypic rare‐earth metal pentagermanides including the new compound TbGe5 were prepared by high‐pressure synthesis. They crystallize in the orthorhombic space group Immm [No. 71; a = 395.70(9) pm; b = 611.1(2) pm, and c = 983.6(3) pm for TbGe5]. The crystal structure is isotypic to LaGe5 and consists of puckered germanium slabs, which sandwich a second germanium species and the rare‐earth metal atoms. At ambient pressure, the thermal decomposition of the phases REGe5 (RE = La, Nd, Sm, Gd, and Tb) proceeds via discrete intermediate steps into Ge(cF8) and thermodynamically stable germanium‐poorer phases. The investigated compounds REGe5 are paramagnetic metallic conductors, which order antiferromagnetically at low temperatures. Specific heat measurements reveal that the superconducting state of LaGe5 below Tc = 7.1(1) K is characterized by a critical field of μ0Hc2 = 0.2 T and weak electron‐phonon coupling. Density‐functional based band‐structure calculations yield a very similar electronic structure for all the isotypic REGe5 compounds. Besides a slight increase in the width of the valence band for smaller RE atoms, only minor differences are found for the two different germanium environments.  相似文献   
104.
The crystal structures of (NH4)[HgSO3Cl] ( 1 ) and of (NH4)2[Hg(SO3)2] ( 2 ) were determined from single crystal diffractometer data sets. 1 : 22 °C, Pnma, Z = 4, a = 15.430(3), b = 5.525(1), c = 6.679(1) Å, R(F) = 0.0256, Rw(F2) = 0.0642 (all 1056 unique reflections). 2 : ?108 °C, P212121, Z = 4, a = 6.2240(4), b = 9.3908(6), c = 13.6110(8) Å, R(F) = 0.0179, Rw(F2) = 0.0493 (all 2699 unique reflections). The structure of 1 contains bent Cl‐Hg‐SO3 entities (site symmetry m; d(Hg‐Cl) = 2.3403(13) Å, d(Hg‐S) = 2.3636(12) Å, ∠(Cl‐Hg‐S) = 164.51(5)°, d(S‐O) 2×1.458(3) Å, 1.468(4) Å, = 1.461Å) linked to undulated ribbons parallel to the b ‐axis by intermolecular secondary bonds SO···Hg (d(O···Hg) = 2×2.595(3) Å). These ribbons in turn aggregate to layers around the bc ‐plane. The layers are stacked along the a ‐axis with interlayer distances of a /2. The structure of 2 is made up of O3S‐Hg‐SO3 moieties (d(Hg‐S) = 2.3935(7), 2.3935(8) Å; ∠(Hg‐S‐Hg) = 174.41(3)°; = 1.474Å), that are linked to ribbons parallel to the a axis by coordination of Hg to three remote O atoms (2.801(4) < d(Hg‐O) < 2.844(3) Å). Adjacent ribbons are joined together by an additional Hg‐O contact of 2.733(3) Å, leading to a three‐dimensional anionic framework. Both crystal structures are stabilised by disordered NH4+ cations, placed between the anionic layers or in the vacancies of the framework, via moderate hydrogen bonding interactions N‐H···O with donor‐acceptor distances ranging from 2.8 to 3.2Å. 1 and 2 were further characterised by thermal analysis (TG, DSC). They start to decompose at temperatures above 130 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号