首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   15篇
化学   132篇
力学   3篇
数学   28篇
物理学   55篇
  2024年   1篇
  2023年   5篇
  2022年   13篇
  2021年   11篇
  2020年   7篇
  2019年   8篇
  2018年   12篇
  2017年   6篇
  2016年   18篇
  2015年   4篇
  2014年   12篇
  2013年   30篇
  2012年   9篇
  2011年   15篇
  2010年   6篇
  2009年   11篇
  2008年   8篇
  2007年   8篇
  2006年   13篇
  2005年   9篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1997年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
71.
An excessive amount of CO2 is the leading cause of climate change, and hence, its reduction in the Earth''s atmosphere is critical to stop further degradation of the environment. Although a large body of work has been carried out for post-combustion low-temperature CO2 capture, there are very few high temperature pre-combustion CO2 capture processes. Lithium silicate (Li4SiO4), one of the best known high-temperature CO2 capture sorbents, has two main challenges, moderate capture kinetics and poor sorbent stability. In this work, we have designed and synthesized lithium silicate nanosheets (LSNs), which showed high CO2 capture capacity (35.3 wt% CO2 capture using 60% CO2 feed gas, close to the theoretical value) with ultra-fast kinetics and enhanced stability at 650 °C. Due to the nanosheet morphology of the LSNs, they provided a good external surface for CO2 adsorption at every Li-site, yielding excellent CO2 capture capacity. The nanosheet morphology of the LSNs allowed efficient CO2 diffusion to ensure reaction with the entire sheet as well as providing extremely fast CO2 capture kinetics (0.22 g g−1 min−1). Conventional lithium silicates are known to rapidly lose their capture capacity and kinetics within the first few cycles due to thick carbonate shell formation and also due to the sintering of sorbent particles; however, the LSNs were stable for at least 200 cycles without any loss in their capture capacity or kinetics. The LSNs neither formed a carbonate shell nor underwent sintering, allowing efficient adsorption–desorption cycling. We also proposed a new mechanism, a mixed-phase model, to explain the unique CO2 capture behavior of the LSNs, using detailed (i) kinetics experiments for both adsorption and desorption steps, (ii) in situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy measurements, (iii) depth-profiling X-ray photoelectron spectroscopy (XPS) of the sorbent after CO2 capture and (iv) theoretical investigation through systematic electronic structure calculations within the framework of density functional theory (DFT) formalism.

Capturing CO2 before its release. Lithium silicate nanosheets showed high CO2 capture capacity (35.3 wt%) with ultra-fast kinetics (0.22 g g−1 min−1) and enhanced stability at 650 °C for at least 200 cycles, due to mixed-phase-model of CO2 capture.  相似文献   
72.
Ground state (GS) instability of nondegenerate molecules in high symmetric structures is understood through Pseudo Jahn–Teller mixing of the electronic states through the vibronic coupling. The general approach involves setting up of a Pseudo Jahn–Teller (PJT) problem wherein one or more symmetry allowed excited states couple to the GS to create vibrational instability along a normal mode. This faces two major complications namely (1) estimating the adiabatic potential energy surfaces for the excited states which are often difficult to describe in case the excited states have charge-transfer or multi-excitonic (ME) character and (2) finding out how many such excited states (all satisfying the symmetry requirements for vibronic coupling) of increasing energies need to be coupled with the GS for a particular PJT problem. An analogous alternative approach presented here for the well-known case of symmetry breaking of planar (D6h) hexasilabenzene (Si6H6) to the buckled (D3d) structure involves identifying the second-order donor–acceptor, hyperconjugative interactions (E2i → j) that stabilize the distorted structure. Following the recent work of Nori-Shargh and Weinhold, one observes that the orbitals involved in the vibronic coupling between the S0/Sn states and those for the donor (filled)–acceptor (empty) interactions are identical. In fact, deletion of any particular pair of E2i → j interaction creates vibrational instability in the buckled structure and as a corollary, deleting it for the planar structure removes its instability. The one-to-one correlation between the natural bond orbital theory and PJT theory assists in an intuitive identification of the relevant (few) excited states from a manifold of computed ones that cause symmetry breaking by vibronic coupling. © 2019 Wiley Periodicals, Inc.  相似文献   
73.
A new route to two epimeric 2-pyrrolidinylglycine derivatives is developed, which features Mitsunobu amination of a chiral allyl alcohol and ring-closing metathesis as key steps.  相似文献   
74.
An adsorptive stripping square wave voltammetric (AdSqW) method was developed for the determination of 3-nitrotyrosine (3-NT), a biomarker of in vivo oxidative damage in Alzheimer, ALS, Parkinson’s, cardiovascular diseases and cancer, in some biological fluids. Voltammetric measurements were performed in 0.30 M (pH 9.0) phosphate solution as supporting electrolyte, a reduction peak was observed at–0.487 V (vs. Ag/AgCl–3 M KCl) with a hanging mercury drop electrode by square wave voltammetry. Cyclic voltammetric measurements showed that the current was adsorption-controlled. LOD and LOQ values were as 0.25 and 1.5 nM, respectively, for the AdSqW method. 3-NT was determined in plasma and cerebrospinal fluid using AdSqW method, which allowed to work at low concentrations. Recovery value was measured as 96.3 ± 2.3%.  相似文献   
75.
Progress in frustrated Lewis pair (FLP) chemistry has revealed the importance of the main group elements in catalysis, opening new avenues in synthetic chemistry. Recently, new reactivities of frustrated Lewis pairs have been uncovered that disclose that certain combinations of Lewis acids and bases undergo single‐electron transfer (SET) processes. Here an electron can be transferred from the Lewis basic donor to a Lewis acidic acceptor to generate a reactive frustrated radical pair (FRP). This minireview aims to showcase the recent advancements in this emerging field covering the synthesis and reactivities of frustrated radical pairs, with extensive highlights of the results from Electron Paramagnetic Resonance (EPR) spectroscopy to explain the nature and stability of the different radical species observed.  相似文献   
76.
Biocatalytic reaction networks integrate complex cascade transformations via spatial localization of multiple enzymes confined within the cellular milieu. Inspired by nature's ingenuity, we demonstrate that short peptide‐based cross‐β amyloid nanotubular hybrids can promote different kinds of cascade reactions, from simple two‐step, to multistep, to complex convergent cascades. The compartmentalizing ability of paracrystalline cross‐β phases was utilized to colocalize sarcosine oxidase (SOX) and hemin as an artificial peroxidase. Further, the catalytic potential of the amyloid nanotubes with ordered arrays of imidazoles were used as hydrolase mimic. The SOX‐hemin amyloid nanohybrids featuring a single extant enzyme could integrate different logic networks to access complex digital designs with the help of three concatenated AND gates and biologically relevant stimuli as inputs.  相似文献   
77.
Probabilistic evolution theory (PREVTH) is used for the solution of initial value problems of first order explicit autonomous ordinary differential equation sets with second degree multinomial right hand side functions. It is an approximation method based on Kronecker power series: a rewriting of multivariate Taylor series using matrices having certain flexible parameters. Kronecker power series have matrices which are called telescope matrices: \(n \times n^{j+1}\) matrices where j is the index of summation. The additive terms of each telescope matrix is formed through Kronecker product from both sides by Kronecker powers of identity matrices. Recently, squarification is proposed in order to avoid the growing of the matrices in size at each additive term of the series. This paper explains the squarification procedure: the procedure used in order to avoid Kronecker multiplications within PREVTH so that the sizes of the matrices do not grow and so that the amount of necessary computation is reduced. The recursion between squarified matrices is also given. As a numerical application, the solution of a Hénon–Heiles system is provided.  相似文献   
78.
Recent advances in nuclear theory and new astrophysical observations have led to the need for specific theoretical models applicable to dense-matter physics phenomena. Quantum chromodynamics (QCD) predicts the existence of non-nucleonic degrees of freedom at high densities in neutron-star matter, such as quark matter. Within a confining quark matter model, which consists of homogeneous, neutral 3-flavor interacting quark matter with \begin{document}$ \mathcal{O}(m_s^4) $\end{document} corrections, we examine the structure of compact stars composed of a charged perfect fluid in the context of \begin{document}$ f(R,T) $\end{document} gravity. The system of differential equations describing the structure of charged compact stars has been derived and numerically solved for a gravity model with \begin{document}$ f(R,T)= R+ 2\beta T $\end{document}. For simplicity, we assumed that the charge density is proportional to the energy density, namely, \begin{document}$ \rho_{\rm ch} = \alpha \rho $\end{document}. It is demonstrated that the matter-geometry coupling constant β and charge parameter α affect the total gravitational mass and the radius of the star.  相似文献   
79.
Representations of posets in certain modules are used to find indecomposable almost completely decomposable torsion-free abelian groups. For a special class of almost completely decomposable groups we determine the possible ranks of indecomposable groups and show that the possible ranks are realized by indecomposable groups in the class.  相似文献   
80.
Herein we report that boron doping in carbon dots results in increased photoluminescence (PL) quantum yield, which could be used for ratiometric intracellular pH sensing in cancer cell lines. Using a mixture of citric acid monohydrate, thiourea, and boric acid, microwave-assisted synthesis of boron doped blue emitting carbon dots (B-Cdots) with an average size of 3.5±1.0 nm was achieved. For B-Cdots, the maximum quantum yield (QY) was observed to be 25.8 % (11.1 % (w/w) H3BO3 input concentration), whereas, the same was calculated to be 16.9 % and 11.4 % for Cdots (synthesized from citric acid monohydrate and thiourea only) and P-Cdots (phosphorus doped carbon dots; synthesized using citric acid monohydrate, thiourea and phosphoric acid) (11.1 % (w/w) H3PO4 input concentration), respectively. The observed luminescence efficiencies as obtained from steady state and time-resolved photoluminescence measurements suggest an alternative emission mechanism due to boron/phosphorus doping in carbon dots. We furthermore demonstrated facile composite formation using B-Cdots and another carbon dots with orange emission in presence of polyvinyl alcohol (PVA), resulting in white light emission (0.31, 0.32; λex 380 nm). The white light emitting composite enabled ratiometric pH sensing in the aqueous medium and showed favorable uptake properties by cancerous cells for intracellular pH sensing as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号