全文获取类型
收费全文 | 1139篇 |
免费 | 4篇 |
国内免费 | 9篇 |
专业分类
化学 | 602篇 |
晶体学 | 6篇 |
力学 | 43篇 |
数学 | 347篇 |
物理学 | 154篇 |
出版年
2019年 | 12篇 |
2017年 | 8篇 |
2016年 | 13篇 |
2015年 | 14篇 |
2014年 | 18篇 |
2013年 | 33篇 |
2012年 | 25篇 |
2011年 | 39篇 |
2010年 | 20篇 |
2009年 | 21篇 |
2008年 | 40篇 |
2007年 | 50篇 |
2006年 | 34篇 |
2005年 | 42篇 |
2004年 | 41篇 |
2003年 | 28篇 |
2002年 | 26篇 |
2001年 | 26篇 |
2000年 | 15篇 |
1999年 | 14篇 |
1998年 | 19篇 |
1997年 | 12篇 |
1996年 | 13篇 |
1995年 | 21篇 |
1994年 | 19篇 |
1993年 | 11篇 |
1992年 | 18篇 |
1991年 | 13篇 |
1990年 | 12篇 |
1989年 | 15篇 |
1988年 | 20篇 |
1987年 | 20篇 |
1986年 | 33篇 |
1985年 | 27篇 |
1984年 | 16篇 |
1983年 | 11篇 |
1982年 | 19篇 |
1981年 | 16篇 |
1980年 | 29篇 |
1979年 | 31篇 |
1978年 | 22篇 |
1977年 | 10篇 |
1976年 | 19篇 |
1975年 | 19篇 |
1974年 | 27篇 |
1973年 | 20篇 |
1972年 | 15篇 |
1971年 | 14篇 |
1970年 | 13篇 |
1968年 | 8篇 |
排序方式: 共有1152条查询结果,搜索用时 0 毫秒
21.
22.
BLUE AND ULTRAVIOLET-B LIGHT PHOTORECEPTORS IN PARSLEY CELLS 总被引:3,自引:0,他引:3
Abstract— Ultraviolet-B (UV-B) and blue light photoreceptors have been shown to regulate chalcone synthase and flavonoid synthesis in parsley cell cultures. These photoreceptors have not yet been identified. In the present work, we studied UV-B photoreception with physiological experiments involving temperature shifts and examined the possible role of flavin in blue and UV-B light photoreception. Cells irradiated with UV-B light (0.5–15 min) at 2°C have the same fluence requirement for chalcone synthase and flavonoid induction as controls irradiated at 25°C. This is indicative of a purely photochemical reaction. Cells fed with riboflavin and irradiated with 6 h of UV-containing white light synthesize higher levels of chalcone synthase and flavonoid than unfed controls. This effect did not occur with blue light. These results indicate that flavin-sensitization requires excitation of flavin and the UV-B light photoreceptor. The in vivo kinetics of flavin uptake and bleaching indicate that the added flavin may act at the surface of the plasma membrane. In view of the likely role of membrane-associated flavin in photoreception, we measured in vitro flavin binding to microsomal membranes. At least one microsomal flavin binding site was solubilized by resuspension of a microsomal pellet in buffer with high KPi and NaCl concentrations and centrifugation at 38000 g. The 38000 g insoluble fraction had much greater flavin binding and contained a receptor with an apparent KD of about 3.6 μM and an estimated in vivo concentration of at least 6.7 × 10–8M. Flavin mononucleotide, roseoflavin, and flavin adenine dinucleotide can compete with riboflavin for this binding site(s), although each has lower affinity than riboflavin. Most microsomal protein was solubilized by resuspension of the microsomal pellet in non-denaturing detergents and centrifugation at 38 000 g ; however, this inhibited flavin binding, presumably because of disruption of the environment of the flavin receptor. The parsley microsomal flavin binding receptor(s) have a possible role in physiological photoreception. 相似文献
23.
24.
Stephan Brox Axel P. Ritter Eberhard Küster Thorsten Reemtsma 《Analytical and bioanalytical chemistry》2014,406(20):4831-4840
An analytical method using high-performance liquid chromatography–tandem mass spectrometry was developed to determine internal concentrations of 34 test compounds such as pharmaceuticals and pesticides in zebrafish embryos (ZFE), among them, cimetidine, 2,4-dichlorophenoxyacetic acid, metoprolol, atropine and phenytoin. For qualification and quantification, multiple reaction monitoring mode was used. The linear range extends from 0.075 ng/mL for thiacloprid and metazachlor and 7.5 ng/mL for coniine and clofibrate to 250 ng/mL for many of the test compounds. Matrix effects were strongest for nicotine, but never exceeded ±20 % for any of the developmental stages of the ZFE. Method recoveries ranged from 90 to 110 % from an analysis of nine pooled ZFE. These findings together with the simple sample preparation mean this approach is suitable for the determination of internal concentrations from only nine individual ZFE in all life stages up to 96 h post-fertilization. Exemplarily, the time course of the internal concentrations of clofibric acid, metribuzin and benzocaine in ZFE was studied over 96 h, and three different patterns were distinguished, on the basis of the speed and extent of uptake and whether or not a steady state was reached. Decreasing internal concentrations may be due to metabolism in the ZFE. Figure
Quantification of polar pollutants in different life stages of the zebrafish embryo by LC-MS/MS 相似文献
25.
26.
27.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes XXI The Influence of the PR3 Ligands on Formation and Properties of the Phosphinophosphinidene Complexes [{η2‐tBu2P–P}Pt(PR3)2] and [{η2‐tBu2P1–P2}Pt(P3R3)(P4R′3)] (R3P)2PtCl2 and C2H4 yield the compounds [{η2‐C2H4}Pt(PR3)2] (PR3 = PMe3, PEt3, PPhEt2, PPh2Et, PPh2Me, PPh2iPr, PPh2tBu and P(p‐Tol)3); which react with tBu2P–P=PMetBu2 to give the phosphinophosphinidene complexes [{η2‐tBu2P–P}Pt(PMe3)2], [{η2‐tBu2P–P}Pt(PEt3)2], [{η2‐tBu2P–P}Pt(PPhEt2)2], [{η2‐tBu2P–P}Pt(PPh2Et)2], [{η2‐tBu2P–P}Pt(PPh2Me)2], [{η2‐tBu2P–P}Pt(PPh2iPr], [{η2‐tBu2P–P}Pt(PPh2tBu)2] and [{η2‐tBu2P–P}Pt(P(p‐Tol)3)2]. [{η2‐tBu2P–P}Pt(PPh3)2] reacts with PMe3 and PEt3 as well as with tBu2PMe, PiPr3 and P(c‐Hex)3 by substituting one PPh3 ligand to give [{η2‐tBu2P1–P2}Pt(P3Me3)(P4Ph3)], [{η2‐tBu2P1–P2}Pt(P3Ph3)(P4Me3)], [{η2‐tBu2P1–P2}Pt(P3Et3)(P4Ph3)], [{η2‐tBu2P1–P2}Pt(P3MetBu2)(P4Ph3)], [{η2‐tBu2P1–P2}Pt(P3iPr3)(P4Ph3)] and [{η2‐tBu2P1–P2}Pt(P3(c‐Hex)3)(P4Ph3)]. With tBu2PMe, [{η2‐tBu2P–P}Pt(P(p‐Tol)3)2] forms [{η2‐tBu2P1–P2}Pt(P3MetBu2)(P4(p‐Tol)3)]. The NMR data of the compounds are given and discussed with respect to the influence of the PR3 ligands. 相似文献
28.
Eberhard Bothe Helmut Gorner Joachim Opitz Dietrich Schulte-Frohlinde Aslam Siddiqi Malgorzata Wala 《Photochemistry and photobiology》1990,52(5):949-959
Double-stranded (ds) calf thymus DNA (0.4 mM), excited by 20 ns laser pulses at 248 nm, was studied in deoxygenated aqueous solution at room temperature and pH 6.7 in the presence of a sodium salt (10 mM). The quantum yields for the formation of hydrated electrons (phi c-), single-strand breaks (phi ssb) and double-strand breaks (phi dsb) were determined for various laser pulse intensities (IL). phi c- and phi ssb increase linearly with increasing IL; however, phi ssb has a tendency to reach saturation at high IL (greater than 5 X 10(6) Wcm-2). The ratio phi ssb/phi c-, representing the number of ssb per radical cation, is about 0.08 at IL less than or equal to 5 X 10(6) Wcm-2. For comparison, the number of ssb per OH radical reacting with dsDNA is 0.22. On going from argon to N2O saturation, phi ssb and phi dsb become larger by factors of approximately 5 and 10-15, respectively. This enhancement is produced by attack on DNA bases by OH radicals generated by N2O-scavenging of the photoelectrons. While phi ssb is essentially independent of the dose (Etot), phi dsb depends linearly on Etot in both argon- and N2O-saturated solutions. The linear dependence of phi dsb implies a square dependence of the number of dsb on Etot. This portion of dsb formation is explained by the occurrence of two random ssb, generated within a critical distance (h) in opposite strands. For both argon- and N2O-saturated solutions h was found to be of the order of 40-70 phosphoric acid diester bonds. On addition of electron scavengers such as 2-chloroethanol (or N2O plus t-butanol), phi dsb is similar to that in neat, argon-saturated solutions. Thus, hydrated electrons are not involved in the chemical pathway leading to laser-pulse-induced dsb of DNA. 相似文献
29.
30.
Three octahedral complexes containing a (cis-cyclam)iron(III) moiety and an O,N-coordinated o-iminobenzosemiquinonate pi radical anion have been synthesized and characterized by X-ray crystallography at 100 K: [Fe(cis-cyclam)(L(1-3)(ISQ))](PF(6))(2) (1-3), where (L(1-3)(ISQ)) represents the monoanionic pi radicals derived from one-electron oxidations of the respective dianion of o-imidophenolate(2-), L(1), 2-imido-4,6-di-tert-butylphenolate(2-), L(2), and N-phenyl-2-imido-4,6-di-tert-butylphenolate(2-), L(3). Compounds 1-3 possess an S(t) = 0 ground state, which is attained via strong intramolecular antiferromagnetic exchange coupling between a low-spin central ferric ion (S(Fe) = 1/2) and an o-imino-benzosemiquinonate(1-) pi radical (S(rad) = 1/2). Zero-field M?ssbauer spectra of 1-3 at 80 K confirm the low-spin ferric electron configuration: isomer shift delta = 0.26 mm s(-1) and quadrupole splitting DeltaE(Q) = 1.96 mm s(-1) for 1, 0.28 and 1.93 for 2, and 0.33 and 1.88 for 3. All three complexes undergo a reversible, one-electron reduction of the coordinated o-imino-benzosemiquinonate ligand, yielding an [Fe(III)(cis-cyclam)(L(1-3)(IP))](+) monocation. The monocations of 1 and 2 display very similar rhombic signals in the X-band EPR spectra (g = 2.15, 2.12, and 1.97), indicative of low-spin ferric species. In contast, the monocation of 3 contains a high-spin ferric center (S(Fe) = 5/2) as is deduced from its M?ssbauer and EPR spectra. 相似文献