首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   0篇
化学   31篇
晶体学   1篇
力学   6篇
数学   29篇
物理学   9篇
  2020年   2篇
  2019年   4篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   4篇
  2012年   7篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   7篇
  2007年   4篇
  2006年   6篇
  2005年   5篇
  2003年   4篇
  2002年   3篇
  2000年   1篇
  1997年   4篇
  1995年   2篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
71.
We propose a new subgradient-type method for minimizing extremely large-scale nonsmooth convex functions over simple domains. The characteristic features of the method are (a) the possibility to adjust the scheme to the geometry of the feasible set, thus allowing to get (nearly) dimension-independent (and nearly optimal in the large-scale case) rate-of-convergence results for minimization of a convex Lipschitz continuous function over a Euclidean ball, a standard simplex, and a spectahedron (the set of positive semidefinite symmetric matrices, of given size, with unit trace); (b) flexible handling of accumulated information, allowing for tradeoff between the level of utilizing this information and iterations complexity. We present extensions of the scheme for the cases of minimizing non-Lipschitzian convex objectives, finding saddle points of convex-concave functions and solving variational inequalities with monotone operators. Finally, we report on encouraging numerical results of experiments with test problems of dimensions up to 66,000.This research was supported by the Technion Fund for Promotion of Research  相似文献   
72.
73.
74.
A calix[4]arene, in which two of the phenol functions are replaced by pyrazole units, [H2(bpzCal)], was investigated as a ligand for Cu+, Ag+ and Au+ ions. Using [Cu(MeCN)4]BF4 and AgSbF6 as the precursors, complexes [MH2(bpzCal)]X (M = Cu, X = BF4; M = Ag, X = SbF6) were formed, where the calixarene ligands adopt a 1,3-alternate structure and the metal ions are coordinated linearly by the two pyrazolyl donors. [CuH2(bpzCal)]BF4 displayed a – for copper(I) complexes – unusual stability towards O2, which is due to the steric protection of the CuI center. By contrast a dinuclear copper(I) complex [Cu2(bpzCal)] that was obtained through treatment of [H2(bpzCal)] with two equivalents of Cu(HMDS) is rather sensitive towards O2. The preparation of a gold complex required the employment of a gold precursor, which contains one labile and one stabilizing neutral ligand, namely [(PPh3)Au(NCMe)]SbF6, which led to the formation of [(PPh3)AuH2(bpzCal)]SbF6. In this complex [H2(bpzCal)] acts only as a monodentate ligand for the gold center. Taken together, the results demonstrate the potential of [H2(bpzCal)] in providing rather different coordination spheres for metal ions.  相似文献   
75.
We propose necessary and sufficient conditions for a sensing matrix to be “s-semigood” – to allow for exact 1-recovery of sparse signals with at most s nonzero entries under sign restrictions on part of the entries. We express error bounds for imperfect 1-recovery in terms of the characteristics underlying these conditions. These characteristics, although difficult to evaluate, lead to verifiable sufficient conditions for exact sparse 1-recovery and thus efficiently computable upper bounds on those s for which a given sensing matrix is s-semigood. We examine the properties of proposed verifiable sufficient conditions, describe their limits of performance and provide numerical examples comparing them with other verifiable conditions from the literature.  相似文献   
76.
In this contribution we review our latest achievements of combined experimental and theoretical studies to tailor the properties of optical metamaterials(MMs) at will. We give three examples of metamaterial designs that have been realized by means of electron-beam lithography and whose spectroscopic characteristics have been comprehensively investigated. In every case, our experiments are complemented by rigorous numerical simulations. Particular emphasis is put on the significance of such tailored effectiv...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号