首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391432篇
  免费   2807篇
  国内免费   1075篇
化学   205189篇
晶体学   6076篇
力学   18166篇
综合类   28篇
数学   46011篇
物理学   119844篇
  2021年   3414篇
  2020年   3696篇
  2019年   4439篇
  2018年   6284篇
  2017年   6313篇
  2016年   8551篇
  2015年   4581篇
  2014年   7737篇
  2013年   17021篇
  2012年   13086篇
  2011年   15502篇
  2010年   12009篇
  2009年   12021篇
  2008年   15031篇
  2007年   14835篇
  2006年   13481篇
  2005年   12032篇
  2004年   10945篇
  2003年   9919篇
  2002年   9731篇
  2001年   10563篇
  2000年   8358篇
  1999年   6264篇
  1998年   5442篇
  1997年   5554篇
  1996年   4996篇
  1995年   4234篇
  1994年   4421篇
  1993年   4350篇
  1992年   4776篇
  1991年   4900篇
  1990年   4692篇
  1989年   4745篇
  1988年   4611篇
  1987年   4580篇
  1986年   4381篇
  1985年   5648篇
  1984年   5828篇
  1983年   4772篇
  1982年   5030篇
  1981年   4885篇
  1980年   4502篇
  1979年   5042篇
  1978年   5144篇
  1977年   5300篇
  1976年   5313篇
  1975年   4973篇
  1974年   4890篇
  1973年   5114篇
  1972年   3672篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
41.
The thermal diffusion coefficient DT has been obtained for 17 polymer-solvent combinations, each of them spanning a range of polymer molecular weights, using thermal field-flow fractionation. The polymers examined include polystyrene, poly(alpha-methyl)styrene, polymethylmethacrylate, and polysioprene. The solvents include benzene, toluene, ethylbenzene, tetrahydrofuran, methylethylketone, ethylacetate, and cyclohexane. Although DT was confirmed as essentially independent of polymer molecular weight, it was found to vary substantially with the chemical composition of polymer and solvent. The results were used to evaluate several thermal diffusion theories; the agreement with theory was generally found to be unsatisfactory. Attempts were then made to correlate the measured thermal diffusion coefficients with various physicochemical parameters of the polymers and solvent. A good correlation was found in which DT increases with the thermal conductivity difference of the polymer and solvent and varies inversely with the activation energy of viscous flow of the solvent.  相似文献   
42.
The stepwise increase of the burning voltage of short break arcs has been found not only in a gas but also in vacuum. It is suggested that the effect is associated with the occurrence of a positive anode fall which enhances ionisation phenomena near the anode. This view is supported by the simultaneous registration of arc current, burning voltage, light emission from the anode region, of spectral lines of ions, atoms and continuum from the near anode plasma. The phenomena occur beyond a critical gap distance which can be related to the characteristic geometry of the discharge.  相似文献   
43.
A soluble cyano‐substituted poly[(1,3‐phenylene vinylene)‐alt‐(1,4‐phenylene vinylene)] derivative ( 9 ) was synthesized and characterized. Comparison between 9 and its model compound ( 10 ) showed that the chromophore in 9 remained to be well defined as a result of a π‐conjugation interruption at adjacent m‐phenylene units. The attachment of a cyano substituent only at the β position of the vinylene allowed the maximum electronic impact of the cyano group on the optical properties of the poly(p‐phenylene vinylene) material. At a low temperature (?108 or ?198 °C), the vibronic structures of 9 and 10 were partially resolved. The absorption and emission spectra of a film of 9 were less temperature‐dependent than those of a film of 10 , indicating that the former had a lower tendency to aggregate. A light‐emitting diode (LED) based on 9 emitted yellow light (λmax ≈ 578 nm) with an external quantum efficiency of 0.03%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3149–3158, 2003  相似文献   
44.
The synthesis and characterization of a new homologous series of compounds, the 2-cyano-1,3-phenylene bis[4-(4-n-alkoxyphenyliminomethyl)benzoates] derived from 2-cyanoresorcinol is reported. All the compounds are enantiotropic mesogens and exhibit the fascinating B7 mesophase. The characterization of the mesophase was performed using polarizing optical microscopy, differential scanning calorimetry, X-ray diffraction and electro-optical studies.  相似文献   
45.
There is a growing interest in developing numerical tools to investigate the onset of physical instabilities observed in experiments involving viscoelastic flows, which is a difficult and challenging task as the simulations are very sensitive to numerical instabilities. Following a recent linear stability analysis carried out in order to better understand qualitatively the origin of numerical instabilities occurring in the simulation of flows viscoelastic fluids, the present paper considers a possible extension for more complex flows. This promising method could be applied to track instabilities in complex (i.e. essentially non‐parallel) flows. In addition, results related to transient growth mechanism indicate that it might be responsible for the development of numerical instabilities in the simulation of viscoelastic fluids. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
46.
In the direct simulation Monte‐Carlo (DSMC) method for simulating rarefied gas flows, the velocities of simulator particles that cross a simulation boundary and enter the simulation space are typically generated using the acceptance–rejection procedure that samples the velocities from a truncated theoretical velocity distribution that excludes low and high velocities. This paper analyses an alternative technique, where the velocities of entering particles are obtained by extending the simulation procedures to a region adjacent to the simulation space, and considering the movement of particles generated within that region during the simulation time step. The alternative method may be considered as a form of acceptance–rejection procedure, and permits the generation of all possible velocities, although the population of high velocities is depleted with respect to the theoretical distribution. Nevertheless, this is an improvement over the standard acceptance–rejection method. Previous implementations of the alternative method gave a number flux lower than the theoretical number required. Two methods for obtaining the correct number flux are presented. For upstream boundaries in high‐speed flows, the alternative method is more computationally efficient than the acceptance–rejection method. However, for downstream boundaries, the alternative method is extremely inefficient. The alternative method, with the correct theoretical number flux, should therefore be used in DSMC computations in favour of the acceptance–rejection method for upstream boundaries in high‐speed flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
47.
In basin modelling the thermodynamics of a multicomponent multiphase fluid flux are computationally too expensive when derived from an equation of state and the Gibbs equality constraints. In this article we present a novel implicit molar mass formulation technique using binary mixture thermodynamics. The two proposed solution methods, with and without cross derivative terms between components, are based on a preconditioned Newton‐GMRES scheme for each time‐step with analytical computation of the derivatives. These new algorithms reduce significantly the numerical effort for the computation of the molar masses, and we illustrate the behavior of these methods with numerical computations. Copyright © 2004 John Wiley & Sons Ltd.  相似文献   
48.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号