首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   6篇
  国内免费   1篇
化学   127篇
力学   2篇
数学   27篇
物理学   151篇
  2024年   2篇
  2023年   2篇
  2022年   10篇
  2021年   2篇
  2020年   4篇
  2019年   9篇
  2018年   9篇
  2017年   5篇
  2016年   16篇
  2015年   4篇
  2014年   10篇
  2013年   26篇
  2012年   15篇
  2011年   28篇
  2010年   15篇
  2009年   13篇
  2008年   12篇
  2007年   7篇
  2006年   2篇
  2005年   3篇
  2004年   6篇
  2003年   7篇
  2002年   2篇
  2001年   9篇
  2000年   4篇
  1999年   6篇
  1998年   3篇
  1997年   7篇
  1996年   6篇
  1995年   7篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   8篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1984年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1977年   4篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1968年   1篇
排序方式: 共有307条查询结果,搜索用时 15 毫秒
301.
In this paper we report the two photon upconversion process in nanosize Pr:Y2O3 crystals on excitation with 532 nm photon at room temperature. Upconversion emission intensity shows an abrupt change at the critical pump threshold. On the basis of the temporal evolution of the intermediate state population and power-dependence studies, it is concluded that the significant variation in upconversion emission intensity is due to the photon avalanche process.  相似文献   
302.
Copper containing diamond like carbon (Cu-DLC) thin films were deposited on various substrates at a base pressure of 1×10?3 Torr using a hybrid system involving DC-sputtering and radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD) techniques. The compressive residual stresses of these films were found to be considerably lower, varying between 0.7 and 0.94 GPa and Cu incorporation in these films improve their conductivity significantly. Their structural properties were studied by Raman spectroscopy, atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction techniques that clearly revealed the presence of Cu in the DLC structure. Raman analysis yields that Cu incorporation in DLC enhances the graphite-like sp2 bonding. However, the sp2 bonding was found to continuously reduce with the increasing C2H2 gas pressure, this may be due to reduction of Cu nanocrystal at the higher pressure. FTIR results inferred various bonding states of carbon with carbon, hydrogen and oxygen. In addition, hydrogen content and sp3 and sp2 fractions in different Cu-DLC films were also estimated by FTIR spectra and were correlated with stress, electrical, optical and nano-mechanical properties of Cu-DLC films. The effect of indentation load (4–10 mN) on nano-mechanical properties of these films was also explored.  相似文献   
303.
Nanoindentation testing on copper/diamond-like carbon bi-layer films   总被引:1,自引:0,他引:1  
In the present work, the effect of indentation load on nano-mechanical properties of copper/diamond-like carbon (Cu/DLC) bi-layer films was explored. In addition, effect of Cu interlayer and influence of self bias on residual stress and various other nano-mechanical properties such as hardness (H) and elastic modulus (E) of Cu/DLC bi-layer films were also discussed. These Cu/DLC bi-layer films were deposited, using hybrid system involving radio frequency (RF)-plasma enhanced chemical vapor deposition and RF-sputtering units, under varied self biases from −125 to −225 V. The effect of penetration depth with varied load from 5 to 20 mN on H and E of these Cu/DLC bi-layer films was also analyzed.  相似文献   
304.
Acanthamoeba species are capable of causing amoebic keratitis (AK). As a monotherapy, alpha-mangostin is effective for the treatment of AK; however, its bioavailability is quite poor. Moreover, the efficacy of therapy is contingent on the parasite and virulent strains. To improve readiness against AK, it is necessary to find other derivatives with accurate target identification. Beta-tubulin (BT) has been used as a target for anti-Acanthamoeba (A. keratitis). In this work, therefore, a model of the BT protein of A. keratitis was constructed by homology modeling utilizing the amino acid sequence from NCBI (GenBank: JQ417907.1). Ramachandran Plot was responsible for validating the protein PDB. The verified BT PDB was used for docking with the specified ligand. Based on an improved docking score compared to alpha-mangostin (AM), two modified compounds were identified: 1,6-dihydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C1) and 1,6-dihydroxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C2). In addition, molecular dynamics simulations were conducted to analyze the interaction characteristics of the two bound BT–new compound complexes. During simulations, the TRP9, ARG50, VAL52, and GLN122 residues of BT-C1 that align to the identical residues in BT-AM generate consistent hydrogen bond interactions with 0–3 and 0–2. However, the BT-C2 complex has a different binding site, TYR 258, ILE 281, and SER 302, and can form more hydrogen bonds in the range 0–4. Therefore, this study reveals that C1 and C2 inhibit BT as an additive or synergistic effect; however, further in vitro and in vivo studies are needed.  相似文献   
305.
Infections caused by the monkeypox virus (MPXV) have continued to be transmitted significantly in recent years. However, understanding the transmission mechanism, risk factors, and consequences of infection are still limited. Structure-based drug design for MPXV is at an early stage due to the availability of protein structures that have been determined experimentally. However, the structure of the A42R profilin-like protein of MPXV has been solved and submitted to the structure database. This study illustrated an in silico structure-based approach to identify the potential hit compound against A42R of MPXV. Here, 65 Plantago lanceolata compounds were computationally screened against A42R of MPXV. Virtual screening identified top five hits (i) Luteolin 7,3′-Diglucuronide (PubChem ID: 44258091), (ii) Luteolin 7-Glucuronide-3′-Glucoside (PubChem ID: 44258090), (iii) Plantagoside (PubChem ID: 174157), (iv) Narcissoside (PubChem ID: 5481663), and (v) (AlphaE,8S,9R)-N-(3,4-Dihydroxyphenethyl)-8-[(3,4-Dihydroxyphenethyl)Carbamoyl]-9-(1,3-Benzodioxole-5-Yl)-3aalpha,7aalpha-Ethano-1,3-Benzodioxole-5-Acrylamide (PubChem ID: 101131595), with binding energy <−9.0 kcal/mol that was further validated by re-docking and molecular dynamic (MD) simulation. Interaction analysis of re-docked poses confirmed the binding of these top hits to the A42R protein as reported in the reference compound, including active residues ARG114, ARG115, and ARG119. Further, MD simulation and post-simulation analysis support Plantagoside and Narcissoside for substantial stability in the binding pocket of viral protein contributed by hydrogen and hydrophobic interactions. The compounds can be considered for further optimisation and in vitro experimental validation for anti-monkeypox drug development.  相似文献   
306.
307.
Optical Review - Water is one of the fundamental needs for human life on earth. Different kinds of contaminants that exist in the drinking water may cause serious health issues, affect body organs,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号