首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   4篇
化学   12篇
物理学   1篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2016年   5篇
  2008年   1篇
排序方式: 共有13条查询结果,搜索用时 78 毫秒
11.
Homoleptic σ‐bonded uranium–alkyl complexes have been a synthetic target since the Manhattan Project. The current study describes the synthesis and characterization of several unprecedented uranium–methyl complexes. Amongst these complexes, the first example of a homoleptic uranium–alkyl dimer, [Li(THF)4]2[U2(CH3)10], as well as a seven‐coordinate uranium–methyl monomer, {Li(OEt2)Li(OEt2)2UMe7Li}n were both crystallographically identified. The diversity of complexes reported herein provides critical insight into the structural diversity, electronic structure and bonding in uranium–alkyl chemistry.  相似文献   
12.
We report a methodology that allows the investigation of the consequences of the spin–orbit coupling by means of the QTAIM and ELF topological analyses performed on top of relativistic and multiconfigurational wave functions. In practice, it relies on the “state-specific” natural orbitals (NOs; expressed in a Cartesian Gaussian-type orbital basis) and their occupation numbers (ONs) for the quantum state of interest, arising from a spin–orbit configuration interaction calculation. The ground states of astatine diatomic molecules (AtX with X = At F) and trihalide anions (IAtI , BrAtBr , and IAtBr ) are studied, at exact two-component relativistic coupled cluster geometries, revealing unusual topological properties as well as a significant role of the spin–orbit coupling on these. In essence, the presented methodology can also be applied to the ground and/or excited states of any compound, with controlled validity up to including elements with active 5d, 6p, and/or 5f shells, and potential limitations starting with active 6d, 7p, and/or 6f shells bearing strong spin–orbit couplings.  相似文献   
13.
Chlorine K-edge X-ray absorption near edge structure (XANES) in actinideIV hexachlorides, [AnCl6]2− (An = Th–Pu), is calculated with relativistic multiconfiguration wavefunction theory (WFT). Of particular focus is a 3-peak feature emerging from U toward Pu, and its assignment in terms of donation bonding to the An 5f vs. 6d shells. With or without spin–orbit coupling, the calculated and previously measured XANES spectra are in excellent agreement with respect to relative peak positions, relative peak intensities, and peak assignments. Metal–ligand bonding analyses from WFT and Kohn–Sham theory (KST) predict comparable An 5f and 6d covalency from U to Np and Pu. Although some frontier molecular orbitals in the KST calculations display increasing An 5f–Cl 3p mixing from Th to Pu, because of energetic stabilization of 5f relative to the Cl 3p combinations of the matching symmetry, increasing hybridization is neither seen in the WFT natural orbitals, nor is it reflected in the calculated bond orders. The appearance of the pre-edge peaks from U to Pu and their relative intensities are rationalized simply by the energetic separation of transitions to 6d t2gversus transitions to weakly-bonded and strongly stabilized a2u, t2u and t1u orbitals with 5f character. The study highlights potential pitfalls when interpreting XANES spectra based on ground state Kohn–Sham molecular orbitals.

Chlorine K-edge XANES of An(iv) hexachlorides, calculated with multiconfiguration wavefunction theory, is interpreted in terms of similar metal–ligand covalency along the An = Th–Pu series.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号