首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
化学   43篇
  2013年   5篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有43条查询结果,搜索用时 156 毫秒
31.
32.
In order to characterize grafted polyelectrolyte layers based on electrokinetic measurements a theory of the surface conductivity Ksigma was developed, starting from the model of thick polyelectrolyte layers with uniform segment distribution and dissociable groups with an unknown pK value. According to this model the inner part of the polyelectrolyte layer adjacent to the substrate is considered to be isopotential while the potential decay occurs in a zone near the solution side of the layer. A simple equation for the Donnan potential psiD as a function of pH, pK, electrolyte concentration C0, and volume charge density rho was obtained. In the derived equation Ksigma is directly related to psiD while the other terms have less influence on the magnitude of Ksigma and can be accounted for in a second approximation using psiD as determined from the measured Ksigma. Evaluation of the suggested model indicates that Ksigma measurements provide an effective method to characterize polyelectrolyte layers by analyzing the dependence of psiD on pH and C0: The magnitude of Ksigma yields information about the surface charge at complete dissociation of the ionizable groups. The dependence of Ksigma on pH and C0 can be used for the determination of the pK value of the dissociating functions and the segment volume fraction of the polyelectrolyte can be estimated using the measured value of rho.  相似文献   
33.
According to the theory of one of the authors, when the adsorption layer on a solid surface in contact with a solution is mobile, the gradient of concentration of the solution along the solid surface causes capillary-osmotic slip in addition to diffusional flow of the liquid. In the case of porous partitions separating solutions of different concentrations, slip along the pore walls causes convective transfer of the solution, i.e., capillary osmosis. A special unit has been constructed to study this phenomenon and the velocity of capillary-osmotic flow is measured with the aid of radioactive indicators. Formulas are derived for the arising capillary-osmotic flow of substance, making it possible, by introducing a correction for the diffusional flow, to calculate the velocity of capillary-osmotic slip.

There is usually on the surface of glass both a double layer due to the dissociated part of the solution, and an adsorption layer of the undissociated part of the solution. Thus, under real conditions there are flows due both to the double layer on the glass surface and to the mobile part of the adsorption layer of the undissociated part of the solution. Knowing the values of the capillary-osmotic slip and the zeta-potential, one can calculate which of these processes predominates. For this purpose capillary-osmotic flows through Shott filters of certain aqueous solutions and nonaqueous mixtures are measured simultaneously with their zeta-potentials, on the surface of Shott glass. It is shown that for these solutions the flows caused by the double layer at the glass surface are small compared to those due to the mobile part of the adsorption layer of the undissociated part of the solution.

Expressions are obtained for positive and negative adsorption of the undissociated part of the solution, relating the capillary-osmotic velocity to the constant of effective molecular attraction between the dissolved molecules and the glass.

Hence, the constants of molecular attraction between the molecules and the glass, and the average distance between the solute molecules and the plane of slip are calculated from experimental results for the solutions studied.

Thus, the experimental method and calculations proposed may be used for analyzing the structure of adsorption layers at solid-solution interfaces.  相似文献   

34.
A technology is elaborated for the fabrication of a novel tympanostomy tube (TT) from solidified polymer melts (Elvax and Polyurethane) and antibiotics (Ciprofloxacin and Usnic acid) for insertion into tympanic membrane (ear drum) according to the established surgical procedure. The long-term in vitro release kinetics of the antibiotics into liquid water has been assessed using standard methods. The measured kinetic curves revealed two stages of antibiotic release into the finite space. During the first stage (fast), the fast release rate is almost invariant and is determined by the diffusion through the steady diffusion layer formed due to solution agitation. In this first stage, the influence of the initial internal transport is weak because it takes place at negligibly small distance from interface and accordingly, at negligibly concentration drop. After the antibiotic concentration decreases within the much broader layer of matrix near interface, the internal transport becomes important. This manifests itself as the second stage in measured kinetics of release curves which is characterized by a gradual decrease in rate. The minimum inhibition concentrations of three antibiotics/antimicrobial compounds for four bacterial species were measured. The first stage of fast release from the polymer implant lasts 6 days at a polymer loading by Ciprofloxacin (0.03 g/cm(3)) and this was sufficient for preventing biofilm formation on the surface of the implant material. The measured kinetic curves of drug release showed more rapid decrease in the release rate compared to the Higuchi approximation. Comparison with existing theories, which account for the finite rate of drug dissolution, showed that this may explain the observed deviation from the diffusion-controlled Higuchi model. Large dimensions of drug particles and their aggregation retard the dissolution stage and consequently the release rate. Melt blending was found to cause the drug particle aggregation within polymer matrixes which was confirmed by microscopic reexamination of the polymer implant materials.  相似文献   
35.
Experimental evidence collected more than 20 years ago in different laboratories suggests that the interactions between live biological cells and micro- and nanoparticles depend on their metabolic state. These experiments were conducted by reputable groups, led by prominent leaders such as H. Pohl of the USA, who was the inventor of dielectrophoresis, and B. Derjaguin of the Soviet Union who was the leading author of DLVO theory. The experiments had been mostly conducted with microparticles in the early 1980s. In the early 1990s, Ukrainian researchers showed that the interaction of live cells with gold nanoparticles consisted of an initial reversible step that also depended on cell metabolism. They found indirect evidence that the ion pumps of the cells were responsible for the reversible step. Ion pumps generate a transmembrane potential, a measurable and widely-used characteristic of the cell's energetic state. The transmembrane potential, in turn, strongly affects the ζ-potential, as was experimentally discovered 40 years ago by several independent groups using cell electrophoresis. This relationship should be taken into account when DLVO theory is considered as the basis for describing the interactions between live cells and micro- and nanoparticles. Unfortunately, detail theoretical analysis indicates that such modification would not be sufficient for explaining observed peculiarities mentioned above. That is why distinguished theoreticians such as Pohl, Frohlich, Derjaguin and others have suggested three theoretical models, presumably to explain these experiments. These theoretical models should be considered to be complementary to the well-established concepts developed on this subject in the molecular biology of cells and cell adhesion. This paper is not a revision of the existing models. It is an overview of the old and forgotten experimental data and discussion of the suggested theoretical models.The unusual interaction mechanisms are only specific for live biological cells and serve a dual role: either as a first barrier to protect the cell from potentially damaging, dispersed particulates, or as a means of accumulating useful substances. Both functions are critical for the modern problem of nanotoxicology.  相似文献   
36.
Dukhin AS  Dukhin SS 《Electrophoresis》2005,26(11):2149-2153
Switching from direct current (DC) to alternating current (AC) electric fields has provided substantial improvements in various instrument techniques that use electric fields for manipulating with various liquid-based systems. For example, AC fields are now used in both light scattering and electroacoustic instruments for measuring xi-potential, largely replacing more traditional microelectrophoresis techniques that use DC fields. In this paper, we suggest a novel way to make a similar transition in the area of separation techniques, capillary electrophoresis (CE) in particular. Dielectrophoresis is one well-known separation effect in which a drifting motion of particles is produced in a "spatially nonhomogeneous" AC electric field. However, there is another field effect that also causes a similar drift of particles. Instead of a "spatially nonhomogeneous" field, this method relies on a "temporally nonhomogeneous" field, normally referred to as "aperiodic electrophoresis". Despite a number of recently published experimental and theoretical papers describing this effect, it is less well-known than dielectrophoresis. We present a short overview of some of the relevant papers. We point out for the first time the idea that "aperiodic electrophoresis" might be useful for separation of macromolecules. We suggest several new mechanisms that could induce this effect in a sufficiently strong AC electric field. This effect can be used as a basis for a new separation method having several important advantages over traditional CE. We present a simple scheme as an example illustrating this new method.  相似文献   
37.
The processes of attachment and detachment of small or medium-sized particles to relatively large bubbles during microflotation are considered in terms of the heterocoagulation theory. Calculations are made for the conditions that the surface potentials are of similar sign and constant, that one of the surface potentials is small, that hydrophobic attraction is absent, and that there are no surface deformations. Under these conditions bubble-particle aggregates may form as a result of an electrostatic attraction which exceeds the repulsive van der Waals force at intermediate distances. Next to electrostatic and van der Waals forces, hydrodynamic and gravitational forces are considered. These forces may overcome the electrostatic repulsion at large distances and promote particle bubble attachment. Strong electrostatic attraction at small distances, arising at a large difference of the surface potentials of the bubble and the particle and of low electrolyte concentrations, can prevent subsequent detachment by hydrodynamic and gravitational forces. With increasing electrolyte concentration the electrostatic barrier increases and the attractive electrostatic force diminishes. As a result, a critical electrolyte concentration for microflotation exists. Above this concentration attachment may still occur but it is followed by detachment. At lower electrolyte concentrations the electrostatic attractive force prevents the detachment. The dependence of the critical electrolyte concentration on the values of the bubble and particle potentials and the Hamaker constant is calculated. The critical concentration does not depend on particle or bubble size if the absolute values of the total detachment force and the total pressing force coincide, which is the case for Stokes and potential flow. For every electrolyte concentration lower than the critical value there are two critical particle sizes that limit the flotation possibility. For small particle sizes attachment is impossible because the pressing force is smaller than the electrostatic barrier. For large particle sizes detachment cannot be prevented because the detachment force exceeds the maximum electrostatic attraction. A microflotation domain of intermediate particle sizes exists in which irreversible heterocoagulation occurs. Copyright 2001 Academic Press.  相似文献   
38.
An approximate analytical solution is obtained for the adsorption kinetics equation derived earlier. On the basis of these relations the importance of the consideration of a non-equilibrium diffuse layer has been shown. To describe the retarded adsorption kinetics the distribution of adsorbed ions in the diffuse layer section of multivalent surfactant ions has been taken into account. The rate of adsorption calculated for a non-ionic surfactant is compared with the adsorption rate for monovalent and bivalent ionic surfactants, respectively.  相似文献   
39.
40.
It was shown that, in the case of adsorbing ions, the Boltzmann equation cannot be applied in its classical form, but has to be modified by considering the flux of adsorbing ions. From the comparison with the adsorption of nonionic surfactants a ratio results which is the measure of deceleration of adsorption kinetics due to the electric double layerr=K(y s)/(t). At highr-values the electrostatic deceleration controls the adsorption kinetics process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号