排序方式: 共有43条查询结果,搜索用时 0 毫秒
31.
32.
Electrokinetic fingerprinting (EF) was introduced by Marlow and Rowell [Marlow BJ, Rowel RL. Langmuir 1990;6:1088] for the comprehensive characterization of charged particle surfaces. Afterwards, EF was applied by many groups for the characterization of "hard" (i.e. non-swelling) surfaces. However, the advantages of EF could not yet utilized for the characterization of grafted polyelectrolyte layers (PL) since the theoretical background was not yet elaborated. A theory for the characterization of PL at complete dissociation of the functional groups was developed by Ohshima [Adv Colloid Interface Sci 1995;62:189] and later extended by Dukhin et al. [Dukhin S, Zimmermann R, Werner C. J Colloid Interface Sci 2005;286:761] for any degree of dissociation. Further progress in the characterization of soft surfaces may be achieved by combining EF and surface conductivity (SC) measurements. Both theory and experiment demonstrate that integrated measurements of SC and apparent zeta potential zeta(a) in broad ranges of pH and ionic strength provide information about Donnan potential Psi(D), surface charge, pK and surface potential Psi(0), while the interpretation is more uncertain, when only zeta(a) is measured. This advanced method of PL characterization is established for PL grafted on flat surfaces. When PL are formed on spherical particles, the SC may be measured by means of conductometry and/or dielectric spectroscopy. However, the current theories can only be applied within a rather narrow range of the practically relevant conditions. To overcome this limitation, an unified approach to the theory of electrophoresis for spherical particles with grafted PL was elaborated taking into account the existence of two different electrokinetic models for soft surfaces. While one model is focused on hydrodynamic permeability of soft surface and disregards surface current, another model considers the surface current and disregards electrokinetic water transport within the soft surface layer. Unification became possible through generalization of the capillary osmosis theory over soft surfaces. 相似文献
33.
In existing theories emulsion desiabilization is considered as the combined processes of irreversible flocculation and coalescence of dispersed droplets. This approach can be justified when the potential pit characterizing the energy of droplet interaction is sufficiently deep, i.e. excluding small droplet dimensions, strong electrosiatic repulsion and low electrolyte concentrations. For smaller droplet dimensions and stronger electrostatic repulsions the emulsion instability must be considered as a combined process of reversible flocculation and coalescence. In this paper a mathematical model that couples the kinetics of flocculation, coalescence and floe fragmentation is developed in order to quantify the kinetic instability of emulsions with charged submicron droplets. The characteristic limes for flocculation (Smoluchowski's time τc) for coalescence (coalescence time τc) and for disaggregation (doublet lifetimeτd) are considered model parameters. The mathematical model applies to the case when and τd<< τc, which corresponds to a situation with a small multiplet concentration compared to the concentration of doublets and a singlet-doublet quasi-equilibrium. It is established that at singlet-doublet quasi-equilibrium the rate of the decline in the total droplet concentration is described by second order kinetics in distinction to the exponential time dependence valid for coalescence at irreversible flocculation. The double disintegration reduces the entire coalescence rate, expressed as τsm/ τd. This reduction is very large at small values of Td. The mathematical model presented can hased on the spontaneous disintegration of doublets predict changes in emulsion stability for model systems and also for technologically important emulsions. 相似文献
34.
The processes of attachment and detachment of small or medium-sized particles to relatively large bubbles during microflotation are considered in terms of the heterocoagulation theory. Calculations are made for the conditions that the surface potentials are of similar sign and constant, that one of the surface potentials is small, that hydrophobic attraction is absent, and that there are no surface deformations. Under these conditions bubble-particle aggregates may form as a result of an electrostatic attraction which exceeds the repulsive van der Waals force at intermediate distances. Next to electrostatic and van der Waals forces, hydrodynamic and gravitational forces are considered. These forces may overcome the electrostatic repulsion at large distances and promote particle bubble attachment. Strong electrostatic attraction at small distances, arising at a large difference of the surface potentials of the bubble and the particle and of low electrolyte concentrations, can prevent subsequent detachment by hydrodynamic and gravitational forces. With increasing electrolyte concentration the electrostatic barrier increases and the attractive electrostatic force diminishes. As a result, a critical electrolyte concentration for microflotation exists. Above this concentration attachment may still occur but it is followed by detachment. At lower electrolyte concentrations the electrostatic attractive force prevents the detachment. The dependence of the critical electrolyte concentration on the values of the bubble and particle potentials and the Hamaker constant is calculated. The critical concentration does not depend on particle or bubble size if the absolute values of the total detachment force and the total pressing force coincide, which is the case for Stokes and potential flow. For every electrolyte concentration lower than the critical value there are two critical particle sizes that limit the flotation possibility. For small particle sizes attachment is impossible because the pressing force is smaller than the electrostatic barrier. For large particle sizes detachment cannot be prevented because the detachment force exceeds the maximum electrostatic attraction. A microflotation domain of intermediate particle sizes exists in which irreversible heterocoagulation occurs. Copyright 2001 Academic Press. 相似文献
35.
Ralf Zimmermann Stanislav S. Dukhin Carsten Werner Jérôme F.L. Duval 《Current Opinion in Colloid & Interface Science》2013,18(2):83-92
During the past decade, much attention has been devoted to the use of electrokinetic phenomena for addressing both charging mechanism and structure of multi-responsive soft polymeric layers whose thickness may range from few tens of nanometers to several microns. In particular, major progress was achieved in the quantitative reconstruction of streaming current data collected over a wide range of physico-chemical conditions using recent theories for electrohydrodynamics of soft diffuse planar interphases. In this article, we review the basics of the methodology adopted for deciphering the mechanisms governing the charging of electric double layers at soft planar films in connection with their structure that may vary according to pH, salt concentration or temperature depending on the responsive character of the system. It is demonstrated how the combination of streaming current, surface conductivity and swelling measurements allows for a comprehensive understanding of the interrelated protolytic, hydrodynamic, electrostatic and structural properties of polymer layers. We discuss the benefits and limits of the approach on the basis of studies carried out on uncharged, moderately charged and highly charged soft polymeric films supported by hard charged carriers. In a final part, the basic processes governing the peculiar electrokinetic properties of soft planar polyelectrolyte multilayers under lateral flow conditions are described. 相似文献
36.
Switching from direct current (DC) to alternating current (AC) electric fields has provided substantial improvements in various instrument techniques that use electric fields for manipulating with various liquid-based systems. For example, AC fields are now used in both light scattering and electroacoustic instruments for measuring xi-potential, largely replacing more traditional microelectrophoresis techniques that use DC fields. In this paper, we suggest a novel way to make a similar transition in the area of separation techniques, capillary electrophoresis (CE) in particular. Dielectrophoresis is one well-known separation effect in which a drifting motion of particles is produced in a "spatially nonhomogeneous" AC electric field. However, there is another field effect that also causes a similar drift of particles. Instead of a "spatially nonhomogeneous" field, this method relies on a "temporally nonhomogeneous" field, normally referred to as "aperiodic electrophoresis". Despite a number of recently published experimental and theoretical papers describing this effect, it is less well-known than dielectrophoresis. We present a short overview of some of the relevant papers. We point out for the first time the idea that "aperiodic electrophoresis" might be useful for separation of macromolecules. We suggest several new mechanisms that could induce this effect in a sufficiently strong AC electric field. This effect can be used as a basis for a new separation method having several important advantages over traditional CE. We present a simple scheme as an example illustrating this new method. 相似文献
37.
An approximate analytical solution is obtained for the adsorption kinetics equation derived earlier. On the basis of these relations the importance of the consideration of a non-equilibrium diffuse layer has been shown. To describe the retarded adsorption kinetics the distribution of adsorbed ions in the diffuse layer section of multivalent surfactant ions has been taken into account. The rate of adsorption calculated for a non-ionic surfactant is compared with the adsorption rate for monovalent and bivalent ionic surfactants, respectively. 相似文献
38.
39.
It was shown that, in the case of adsorbing ions, the Boltzmann equation cannot be applied in its classical form, but has to be modified by considering the flux of adsorbing ions. From the comparison with the adsorption of nonionic surfactants a ratio results which is the measure of deceleration of adsorption kinetics due to the electric double layerr=K(y
s)/(t). At highr-values the electrostatic deceleration controls the adsorption kinetics process. 相似文献
40.